Download Free Laser Isotope Separation Employing Condensation Repression Book in PDF and EPUB Free Download. You can read online Laser Isotope Separation Employing Condensation Repression and write the review.

Molecular laser isotope separation (MLIS) techniques using condensation repression(CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.
Laser isotope separation (LIS) is an emerging technology that uses relatively small, widely-available lasers to achieve civilian or weapons grade concentration of fissile material to fuel nuclear reactions. To date only a few, limited proliferation risk analyses of LIS technology have been conducted. This paper provides a historically and technically informed update on the current state of LIS technology and it explains the high likelihood of increased global LIS adoption. The paper also explains how international rules governing nuclear energy are ill-equipped to handle such new technology. It traces the current limitations to broader issues in international relations theory, especially the incomplete accounts of the role of technology in the proliferation dynamic in the dominant neorealism and social construction of technology approaches. The paper introduces the concept of "international technology development structure," a framework for understanding how technology-related opportunities and constraints at the international system-level influence state nuclear weapons choices. The paper provides a thorough update of recent international laser innovations relevant to laser isotope separation and it explains how the spread of laser-related knowledge expands state nuclear options and influences their choices. The paper also provides a country-by-country update on LIS programs and it uses the example of Iran's laser isotope separation program to show how existing International Atomic Energy Agency efforts and export control approaches will be inadequate to addressing dual-use technologies such as LIS. It concludes by proposing a new course that links good standing in nuclear non-proliferation agreements to participation in the World Trade Organization, global conferences, and fundamental university research. Ultimately, the paper attempts to provide a comprehensive account of how emerging laser isotope separation technology presents non-proliferation challenges and it attempts to explore options for addressing this new period in technological achievement and change.
Written by leading Russian scientists, including Nobel laureate, A.M. Prokhorov (1916-2002), this first book on this important technology allows an understanding of the physics of atomic vapor laser isotope separation and new photochemical methods of laser isotope separation. One entire chapter is devoted to chemical reactions of atoms in excited states, while further chapters deal with the separation of isotopes by one photon isotope-selective and coherent isotope-selective two photon excitation of atoms. A final chapter looks at the prospects for the industrial production of isotope products by laser isotope separation. The whole is rounded off by six appendices.
Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old" calutrons" (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons."
In this global wake-up call, nuclear physicist Jeff Eerkens explores remedies for the impending energy crisis, when oil and natural gas are depleted. The Nuclear Imperative demonstrates that solar, wind, and biomass power are incapable of supplying the enormous quantities of electricity and heat needed for manufacturing portable synthetic fuels to replace our current use of fossil fuels. It offers a fresh look at uranium-produced energy as the optimal affordable solution.