Download Free Laser Induced Breakdown Spectroscopy In Biological Forensic And Materials Sciences Book in PDF and EPUB Free Download. You can read online Laser Induced Breakdown Spectroscopy In Biological Forensic And Materials Sciences and write the review.

This book offers a comprehensive overview of recent advances in the area of laser-induced breakdown spectroscopy (LIBS), focusing on its application to biological, forensic and materials sciences. LIBS, which was previously mainly used by physicists, chemists and in the industry, has now become a very useful tool with great potential in these other fields as well. LIBS has a unique set of characteristics including minimal destructiveness, remote sensing capabilities, potential portability, extremely high information content, trace analytical sensitivity and high throughput. With its content divided into two main parts, this book provides not only an introduction to the analytical capabilities and methodology, but also an overview of the results of recent applications in the above fields. The application-oriented, multidisciplinary approach of this work is also reflected in the diversity of the expert contributors. Given its breadth, this book will appeal to students, researchers and professionals interested in solving analytical/diagnostic/material characterization tasks with the application of LIBS.
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.
Lasers have a wide and growing range of applications in medicine. Lasers for Medical Applications summarises the wealth of recent research on the principles, technologies and application of lasers in diagnostics, therapy and surgery.Part one gives an overview of the use of lasers in medicine, key principles of lasers and radiation interactions with tissue. To understand the wide diversity and therefore the large possible choice of these devices for a specific diagnosis or treatment, the respective types of the laser (solid state, gas, dye, and semiconductor) are reviewed in part two. Part three describes diagnostic laser methods, for example optical coherence tomography, spectroscopy, optical biopsy, and time-resolved fluorescence polarization spectroscopy. Those methods help doctors to refine the scope of involvement of the particular body part or, for example, to specify the extent of a tumor. Part four concentrates on the therapeutic applications of laser radiation in particular branches of medicine, including ophthalmology, dermatology, cardiology, urology, gynecology, otorhinolaryngology (ORL), neurology, dentistry, orthopaedic surgery and cancer therapy, as well as laser coatings of implants. The final chapter includes the safety precautions with which the staff working with laser instruments must be familiar.With its distinguished editor and international team of contributors, this important book summarizes international achievements in the field of laser applications in medicine in the past 50 years. It provides a valuable contribution to laser medicine by outstanding experts in medicine and engineering. - Describes the interaction of laser light with tissue - Reviews every type of laser used in medicine: solid state, gas, dye and semiconductor - Describes the use of lasers for diagnostics
This is the first comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.
Chemometrics: Data Treatment and Applications demonstrates the best practices for treating real-world analytical instrument data and how to apply chemometrics to this data. Rather than focusing on the mathematical theory involved in chemometrics, this book is meant for the industrial chemist, and academics and advanced students that want to use chemometrics in practice. Case studies on several applications are presented. Unlike existing literature, this book focuses on best practices, practical realities, and challenges when treating data, rather than on the mathematical theory. It also provides basic information on chemometrics, several chapters on how to treat, and the best practices used to treat, data from different analytical instruments, as well as case studies and uses of chemometrics in different fields. The book is written primarily for analytic chemists as practitioners in analytical laboratories and other industries. It will also be useful to academics and graduate, masters and postdoc students chiefly working in analytical chemistry who want to improve the practical aspects of their research activities. - Presents topical and important chapters for the most-used analytical instruments - Focuses on practical issues in the implementation of chemometrics - Examines advances in the application of chemometrics in several fields - Includes frank perspectives on what works well for the data of a certain analytical instrument given the multiple choices of mathematical models and protocols that can be applied - Covered protocols are heavily illustrated with case studies showing their potential use and the advances in chemometrics
This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LIBS instruments are described covering laboratory systems, inspections systems for in-line process control, mobile systems and remote systems. State-of-the-art industrial applications of LIBS systems are presented demonstrating the benefits of inline process control for improved process guiding and quality assurance purposes.
The most comprehensive resource available on the many applications of portable spectrometers, including material not found in any other published work Portable Spectroscopy and Spectrometry: Volume Two is an authoritative and up-to-date compendium of the diverse applications for portable spectrometers across numerous disciplines. Whereas Volume One focuses on the specific technologies of the portable spectrometers themselves, Volume Two explores the use of portable instruments in wide range of fields, including pharmaceutical development, clinical research, food analysis, forensic science, geology, astrobiology, cultural heritage and archaeology. Volume Two features contributions by a multidisciplinary team of experts with hands-on experience using portable instruments in their respective areas of expertise. Organized both by instrumentation type and by scientific or technical discipline, 21 detailed chapters cover various applications of portable ion mobility spectrometry (IMS), infrared and near-infrared (NIR) spectroscopy, Raman and x-ray fluorescence (XRF) spectroscopy, smartphone spectroscopy, and many others. Filling a significant gap in literature on the subject, the second volume of Portable Spectroscopy and Spectrometry: Features a significant amount of content published for the first time, or not available in existing literature Brings together work by authors with assorted backgrounds and fields of study Discusses the central role of applications in portable instrument development Covers the algorithms, calibrations, and libraries that are of critical importance to successful applications of portable instruments Includes chapters on portable spectroscopy applications in areas such as the military, agriculture and feed, hazardous materials (HazMat), art conservation, and environmental science Portable Spectroscopy and Spectrometry: Volume Two is an indispensable resource for developers of portable instruments in universities, research institutes, instrument companies, civilian and government purchasers, trainers, operators of portable instruments, and educators and students in portable spectroscopy courses.
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy. Hamlet There exists a fairly large number of textbooks concerned with spectrochemical analysis. Most of them deal with practical applications and instrumental factors, and provide the reader with the knowledge indispensable for conducting analyses with the help of emission spectra. Practical knowledge and experience are indeed important requisites for success fully exploiting the spectrochemical method in the field of analytical chemistry. As the method is essentially empirical, it is, in principle, a simple one, provided that we succeed in exciting all samples in an identical manner; for then, relative intensities of spectral lines can serve as the 'weights' by which to measure amounts of elements. However, creating the required constancy of excitation conditions is hampered by the very nature of the sample, whose composition profoundly influences the excitation characteristics of the light source. Therefore, spectrochemists are inevitably engaged in all the processes that determine the radiation output of the light source for a given sample. Dealing, with this ensemble of processes, that is, with 'excitation' in the widest sense, is the object of this book (cf. § 1. 1). The reader will seek in vain for enumerations of practical rules that would tell him how to tackle a particular analysis problem.