Download Free Laser Ablation And Desorption Book in PDF and EPUB Free Download. You can read online Laser Ablation And Desorption and write the review.

This volume introduces the subject of laser ablation and desorption to scientists and engineers. It covers fundamental experimental and theoretical tools, models, and techniques, and introduces the most important applications. Clearly written and organized in a straightforward manner, Laser Ablation and Desorption lead the reader straight through the fundamentals of laser-surface interactions. Each chapter is self-contained and includes references to other chapters as necessary, so that readers may begin with the topic of greatest interest and follow the references to other aspects of the subject contained within the book.Key Features* Provides up-to-date information about one of the most active fields in physics today* Written and edited by major figures in the field of laser ablation and desorption* Represents the most comprehensive treatment of the state-of-the-art available
Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.
Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.
Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficult. Laser Ablation and its Applications emphasizes the wide range of these topics rather than - as is so often the case in advanced science – focusing on one specialty or discipline. The book is divided into four sections: theory and modeling, ultrafast interactions, material processing and laser-matter interaction in novel regimes. The latter range from MALDI to ICF, SNOM’s and femtosecond nanosurgery to laser space propulsion. The book arose from the SPIE series of High Power Laser Ablation Symposia which began in 1998. It is intended for a graduate course in laser interactions with plasmas and materials, but it should be accessible to anyone with a graduate degree in physics or engineering. It is also intended as a major reference work to familiarize scientists just entering the field with laser ablation and its applications.
Mass Spectrometry is an ideal textbook for students and professionals as well as newcomers to the field. Starting from the very first principles of gas-phase ion chemistry and isotopic properties, the textbook takes the reader through the design of mass analyzers and ionization methods all the way to mass spectral interpretation and coupling techniques. Step-by-step, the reader learns how mass spectrometry works and what it can do. The book comprises a balanced mixture of practice-oriented information and theoretical background. It features a clear layout and a wealth of high-quality figures. Exercises and solutions are located on the Springer Global Web.
Laser ablation refers to the phenomenon in which a low wavelength and short pulse (ns-fs) duration of laser beam irradiates the surface of a target to induce instant local vaporization of the target material generating a plasma plume consisting of photons, electrons, ions, atoms, molecules, clusters, and liquid or solid particles. This book covers various aspects of using laser ablation phenomenon for material processing including laser ablation applied for the deposition of thin films, for the synthesis of nanomaterials, and for the chemical compositional analysis and surface modification of materials. Through the 18 chapters written by experts from international scientific community, the reader will have access to the most recent research and development findings on laser ablation through original research studies and literature reviews.
Ambient ionization has emerged as one of the hottest and fastest growing topics in mass spectrometry enabling sample analysis with minimal sample preparation. Introducing the subject and explaining the basic concepts and terminology, this book will provide a comprehensive, unique treatise devoted to the subject. Written by acknowledged experts, there are full descriptions on how new ionization techniques work, with an overview of their strengths, weaknesses and applications. This title will bring the reader right up to date, with both applications and theory, and will be suitable as a tutorial text for those starting in the field from a variety of disciplines.
The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and dimensions of the ablated micro- and nano-structures are performed. The validity and required refinement of different models in different experimental conditions is provided. The pulsed laser deposition process which bases on collecting the ablated particles on a surface is analyzed in terms of efficiency and quality of the deposited films as a function of ambient conditions, target material, laser parameters and substrate characteristics. The interaction between the incident laser and the ablation plasma is analyzed with respect to its influence on the structures of the deposited films and its capacity to generate high harmonics and single attosecond pulses which are highly desirable in pump-probe experiments.
Mass Spectroscopy Imaging (MSI) has emerged as an enabling technique to provide insight into the molecular entities within cells, tissues and whole-body samples and to understand inherent complexities within biological metabolomes. In Mass Spectrometry Imaging of Small Molecules: Methods and Protocols, experts in the MSI field present techniques for 2D and 3D visualization and quantification of a wide array of small molecular species present in biologically relevant samples. Chapters provide detailed operational instructions from sample preparation to method selection, from comparative quantification to structural identification and from data collection to visualization of small molecule mapping in complex samples. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Mass Spectrometry Imaging of Small Molecules: Methods and Protocols aims to bring the rapidly maturing methods of metabolic imaging to life science researchers and to minimize technical intimidation in adapting new technological platforms in biological research.
Mass spectrometry is fast becoming an indispensable field for medical professionals. The mass spectrometric analysis of metabolites and proteins promises to revolutionize medical research and clinical diagnostics. As this technology rapidly enters the medical field, practicing professionals and students need to prepare to take full advantage of its capabilities. Medical Applications of Mass Spectrometry addresses the key issues in the medical applications of mass spectrometry at the level appropriate for the intended readership. It will go a long way to help the utilization of mass spectrometry in medicine.The book comprises five parts. A general overview is followed by a description of the basic sampling and separation methods in analytical chemistry. In the second part a solid foundation in mass spectrometry and modern techniques of data analysis is presented. The third part explains how mass spectrometry is used in exploring various classes of biomolecules, including proteins and lipids. In the fourth section mass spectrometry is introduced as a diagnostic tool in clinical treatment, infectious pathogen research, neonatal diagnostics, cancer, brain and allergy research, as well as in various fields of medicine: cardiology, pulmonology, neurology, psychiatric diseases, hemato-oncology, urologic diseases, gastrointestinal diseases, gynecology and pediatrics. The fifth part covers emerging applications in biomarker discovery and in mass spectrometric imaging.* Provides a broad look at how the medical field is benefiting from advances in mass spectrometry.* Guides the reader from basic principles and methods to cutting edge applications.* There is NO comparable book on the market to fill this fast growing field.