Download Free Large Scale Nonlinear Optimization Book in PDF and EPUB Free Download. You can read online Large Scale Nonlinear Optimization and write the review.

This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.
LANCELOT is a software package for solving large-scale nonlinear optimization problems. This book is our attempt to provide a coherent overview of the package and its use. This includes details of how one might present examples to the package, how the algorithm tries to solve these examples and various technical issues which may be useful to implementors of the software. We hope this book will be of use to both researchers and practitioners in nonlinear programming. Although the book is primarily concerned with a specific optimization package, the issues discussed have much wider implications for the design and im plementation of large-scale optimization algorithms. In particular, the book contains a proposal for a standard input format for large-scale optimization problems. This proposal is at the heart of the interface between a user's problem and the LANCE LOT optimization package. Furthermore, a large collection of over five hundred test ex amples has already been written in this format and will shortly be available to those who wish to use them. We would like to thank the many people and organizations who supported us in our enterprise. We first acknowledge the support provided by our employers, namely the the Facultes Universitaires Notre-Dame de la Paix (Namur, Belgium), Harwell Laboratory (UK), IBM Corporation (USA), Rutherford Appleton Laboratory (UK) and the University of Waterloo (Canada). We are grateful for the support we obtained from NSERC (Canada), NATO and AMOCO (UK).
In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.
Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
This book addresses modern nonlinear programming (NLP) concepts and algorithms, especially as they apply to challenging applications in chemical process engineering. The author provides a firm grounding in fundamental NLP properties and algorithms, and relates them to real-world problem classes in process optimization, thus making the material understandable and useful to chemical engineers and experts in mathematical optimization.
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
In this book, theory of large scale optimization is introduced with case studies of real-world problems and applications of structured mathematical modeling. The large scale optimization methods are represented by various theories such as Benders’ decomposition, logic-based Benders’ decomposition, Lagrangian relaxation, Dantzig –Wolfe decomposition, multi-tree decomposition, Van Roy’ cross decomposition and parallel decomposition for mathematical programs such as mixed integer nonlinear programming and stochastic programming. Case studies of large scale optimization in supply chain management, smart manufacturing, and Industry 4.0 are investigated with efficient implementation for real-time solutions. The features of case studies cover a wide range of fields including the Internet of things, advanced transportation systems, energy management, supply chain networks, service systems, operations management, risk management, and financial and sales management. Instructors, graduate students, researchers, and practitioners, would benefit from this book finding the applicability of large scale optimization in asynchronous parallel optimization, real-time distributed network, and optimizing the knowledge-based expert system for convex and non-convex problems.
​This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.