Download Free Language Truth And Logic In Mathematics Book in PDF and EPUB Free Download. You can read online Language Truth And Logic In Mathematics and write the review.

"A delightful book … I should like to have written it myself." — Bertrand Russell First published in 1936, this first full-length presentation in English of the Logical Positivism of Carnap, Neurath, and others has gone through many printings to become a classic of thought and communication. It not only surveys one of the most important areas of modern thought; it also shows the confusion that arises from imperfect understanding of the uses of language. A first-rate antidote for fuzzy thought and muddled writing, this remarkable book has helped philosophers, writers, speakers, teachers, students, and general readers alike. Mr. Ayers sets up specific tests by which you can easily evaluate statements of ideas. You will also learn how to distinguish ideas that cannot be verified by experience — those expressing religious, moral, or aesthetic experience, those expounding theological or metaphysical doctrine, and those dealing with a priori truth. The basic thesis of this work is that philosophy should not squander its energies upon the unknowable, but should perform its proper function in criticism and analysis.
One can distinguish, roughly speaking, two different approaches to the philosophy of mathematics. On the one hand, some philosophers (and some mathematicians) take the nature and the results of mathematicians' activities as given, and go on to ask what philosophical morals one might perhaps find in their story. On the other hand, some philosophers, logicians and mathematicians have tried or are trying to subject the very concepts which mathematicians are using in their work to critical scrutiny. In practice this usually means scrutinizing the logical and linguistic tools mathematicians wield. Such scrutiny can scarcely help relying on philosophical ideas and principles. In other words it can scarcely help being literally a study of language, truth and logic in mathematics, albeit not necessarily in the spirit of AJ. Ayer. As its title indicates, the essays included in the present volume represent the latter approach. In most of them one of the fundamental concepts in the foundations of mathematics and logic is subjected to a scrutiny from a largely novel point of view. Typically, it turns out that the concept in question is in need of a revision or reconsideration or at least can be given a new twist. The results of such a re-examination are not primarily critical, however, but typically open up new constructive possibilities. The consequences of such deconstructions and reconstructions are often quite sweeping, and are explored in the same paper or in others.
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Part of the "SCM Briefly" series, which summarizes books by philosophers and theologians, this book provides a summary of Language, Truth and Logic. It also includes line by line analysis, short quotes, and a glossary of terms to help students with definitions of philosophical terms.
A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.
This collection will prove a valuable resource for our understanding of the historic Carnap and the living philosophical issues with which he grappled. It arose out of a symposium on Carnap's work (Vienna, 2001). With essays by Graham H. Bird, Jaakko Hintikka, Ilkka Niiniluoto, Jan Wolenski, this volume will interest graduate students of the philosophy of language and logic, as well as professional philosophers, historians of analytic philosophy, and philosophically inclined logicians.
A reconstruction of the lines of argument used by Carnap, Tarski, and Quine, highlighting their historical significance and contemporary relevance based on Carnap's own notes from his conversations of the time.During the academic year 1940-1941, several giants of analytic philosophy congregated at Harvard, holding regular private meetings, with Carnap, Tarski, and Quine. 'Carnap, Tarski, and Quine at Harvard' allows the reader to act as a fly on the wall for their conversations. Carnap took detailed notes during his year at Harvard. This book includes both a German transcription of these shorthand notes and an English translation in the appendix section. Carnap's notes cover a wide range of topics, but surprisingly, the most prominent question is: If the number of physical items in the universe is finite, what form should scientific discourse take? This question is closely connected to anabiding philosophical problem: What is the relationship between the logico-mathematical realm and the material realm? Carnap, Tarski, and Quine's attempts to answer this question involve issues central to philosophy today.This book focuses on three such issues: nominalism, the unity of science, and analyticity. In short, the book reconstructs the lines of argument represented in these Harvard discussions, discusses their historical significance (especially Quine's break from Carnap),and relates them when possible to contemporary treatments of these issues.
W. V. Quine was one of the most influential figures of twentieth-century American analytic philosophy. Although he wrote predominantly in English, in Brazil in 1942 he gave a series of lectures on logic and its philosophy in Portuguese, subsequently published as the book O Sentido da Nova Lógica. The book has never before been fully translated into English, and this volume is the first to make its content accessible to Anglophone philosophers. Quine would go on to develop revolutionary ideas about semantic holism and ontology, and this book provides a snapshot of his views on logic and language at a pivotal stage of his intellectual development. The volume also includes an essay on logic which Quine also published in Portuguese, together with an extensive historical-philosophical essay by Frederique Janssen-Lauret. The valuable and previously neglected works first translated in this volume will be essential for scholars of twentieth-century philosophy.
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.