Download Free Language Modeling For Information Retrieval Book in PDF and EPUB Free Download. You can read online Language Modeling For Information Retrieval and write the review.

A statisticallanguage model, or more simply a language model, is a prob abilistic mechanism for generating text. Such adefinition is general enough to include an endless variety of schemes. However, a distinction should be made between generative models, which can in principle be used to synthesize artificial text, and discriminative techniques to classify text into predefined cat egories. The first statisticallanguage modeler was Claude Shannon. In exploring the application of his newly founded theory of information to human language, Shannon considered language as a statistical source, and measured how weH simple n-gram models predicted or, equivalently, compressed natural text. To do this, he estimated the entropy of English through experiments with human subjects, and also estimated the cross-entropy of the n-gram models on natural 1 text. The ability of language models to be quantitatively evaluated in tbis way is one of their important virtues. Of course, estimating the true entropy of language is an elusive goal, aiming at many moving targets, since language is so varied and evolves so quickly. Yet fifty years after Shannon's study, language models remain, by all measures, far from the Shannon entropy liInit in terms of their predictive power. However, tbis has not kept them from being useful for a variety of text processing tasks, and moreover can be viewed as encouragement that there is still great room for improvement in statisticallanguage modeling.
As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.
Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.
An introduction to information retrieval, the foundation for modern search engines, that emphasizes implementation and experimentation. Information retrieval is the foundation for modern search engines. This textbook offers an introduction to the core topics underlying modern search technologies, including algorithms, data structures, indexing, retrieval, and evaluation. The emphasis is on implementation and experimentation; each chapter includes exercises and suggestions for student projects. Wumpus—a multiuser open-source information retrieval system developed by one of the authors and available online—provides model implementations and a basis for student work. The modular structure of the book allows instructors to use it in a variety of graduate-level courses, including courses taught from a database systems perspective, traditional information retrieval courses with a focus on IR theory, and courses covering the basics of Web retrieval. In addition to its classroom use, Information Retrieval will be a valuable reference for professionals in computer science, computer engineering, and software engineering.
This book is an essential reference to cutting-edge issues and future directions in information retrieval Information retrieval (IR) can be defined as the process of representing, managing, searching, retrieving, and presenting information. Good IR involves understanding information needs and interests, developing an effective search technique, system, presentation, distribution and delivery. The increased use of the Web and wider availability of information in this environment led to the development of Web search engines. This change has brought fresh challenges to a wider variety of users’ needs, tasks, and types of information. Today, search engines are seen in enterprises, on laptops, in individual websites, in library catalogues, and elsewhere. Information Retrieval: Searching in the 21st Century focuses on core concepts, and current trends in the field. This book focuses on: Information Retrieval Models User-centred Evaluation of Information Retrieval Systems Multimedia Resource Discovery Image Users’ Needs and Searching Behaviour Web Information Retrieval Mobile Search Context and Information Retrieval Text Categorisation and Genre in Information Retrieval Semantic Search The Role of Natural Language Processing in Information Retrieval: Search for Meaning and Structure Cross-language Information Retrieval Performance Issues in Parallel Computing for Information Retrieval This book is an invaluable reference for graduate students on IR courses or courses in related disciplines (e.g. computer science, information science, human-computer interaction, and knowledge management), academic and industrial researchers, and industrial personnel tracking information search technology developments to understand the business implications. Intermediate-advanced level undergraduate students on IR or related courses will also find this text insightful. Chapters are supplemented with exercises to stimulate further thinking.
Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.