Download Free Landslides In Sensitive Clays Book in PDF and EPUB Free Download. You can read online Landslides In Sensitive Clays and write the review.

Landslides in sensitive clays represent a major hazard in the northern countries of the world such as Canada, Finland, Norway, Russia, Sweden and in the US state of Alaska. Past and recent examples of catastrophic landslides at e.g. Saint-Jean-Vianney in 1971, Rissa in 1979, Finneidfjord in 1996 and Kattmarka in 2009 have illustrated the great mobility of the remolded sensitive clays and their hazardous retrogressive potential. These events call for a better understanding of landslide in sensitive clay terrain to assist authorities with state-of-the-art hazard assessment methods, risk management schemes, mitigation measures and planning. During the last decades the elevated awareness regarding slope movement in sensitive clays has led to major advances in mapping techniques and development of highly sophisticated geotechnical and geophysical investigation tools. Great advances in numerical techniques dealing with progressive failure and landslide kinematic have also lead to increase understanding and predictability of landslides in sensitive clays and their consequences. This volume consists of the latest scientific research by international experts dealing with geological, geotechnical and geophysical aspects of slope failure in sensitive clays and focuses on understanding the full spectrum of challenges presented by landslides in such brittle materials.
This book gathers the most recent scientific research on the geological, geotechnical and geophysical aspects of slope failure in sensitive clays. Gathering contributions by international experts, it focuses on understanding the complete and practical spectrum of challenges presented by landslides in such complex materials. Based on sound and validated research results, the book also presents several recommendations that could be implemented in the guidelines or code-of-practice. These recommendations cover topics including the characterization and behavior of sensitive clays; the pre-failure, failure and post-failure stages of sensitive clays; mapping and identification methods; climate change; hazard assessment; and risk management. Sensitive clays are known for their potential for causing large landslides, which pose a serious risk to human lives, infrastructure, and surrounding ecosystems within their reach. This has been demonstrated by the recent catastrophic landslides in e.g. Sørum (2016), Skjeggestad (2015), Statland (2014), Byneset (2012), St-Jude (2010), Lyngen (2010) and Kattmarka (2009). The 2015 collapse of the Skjeggestad Bridge in Norway – which was due to a landslide in sensitive clay – alone costs millions of dollars in repairs. Recently, efforts are being made to increase society’s ability to cope with such landslide hazards. Geoscientists are now expected to provide input to the agencies responsible for landslide-risk preparedness. In other words, geoscientists’ role is not only to act as technologists to establish new theories, but also to go the extra mile to implement them in practice, so as to find meaningful solutions to geotechnical problems.
Landslides in sensitive clays represent a severe geohazard in eastern Canada and Scandinavia. Triggered by various factors, such as toe erosion, earthquake, and human activities, a sensitive clay landslide can affect a large area and cause damage to infrastructure. The evaluation of risk associated with sensitive clay landslides is an important but challenging task because the failure mechanisms are not well understood. Different types of landslide (e.g. flowslide, monolithic slide, and spread) occur through significantly different failure processes that affect both retrogression and run-out. Full-scale modeling of such large-scale landslides is not practically feasible. On the other hand, real-time monitoring of the failure in the field is not possible. Therefore, the characteristics of the landslides are generally evaluated by comparing post-slide field investigations with available information on the site before the landslide. Numerical modeling could be an alternative tool to obtain further insights into the failure mechanisms. The failure occurs by progressive formation of shear bands where extremely large plastic shear strain generates, and the failed soil displaces over a large distance. Consequently, the methods commonly used for slope stability analysis, such as limit equilibrium (LE) methods and Lagrangian-based finite element (FE) methods, cannot be used to model the whole process of a sensitive clay landslide. The main objective of the present study is to analyze the factors affecting the failure pattern and extent of sensitive clay landslides triggered by toe erosion and seismic loading. A large deformation finite element (LDFE) method based on Eulerian approach is used to simulate the triggering of the landslide, subsequent failure of soil blocks and run-out of the debris. The landslide generally occurs rapidly in a matter of few minutes; therefore, the simulation is performed for the undrained condition. The strain-softening behavior of sensitive clay is defined as a function of plastic shear displacement that reduces the undrained shear strength to a very low value at a large strain. A strain-rate dependent undrained shear strength model is used, which can model the behavior of soil and remolded clay that flows at a high speed as a fluid-like material. The formation of a slope generally occurs due to the removal of the materials in drained condition. Moreover, groundwater seepage might dominate the failure of a slope. Numerical simulation techniques for the Eulerian based LDFE method are developed to simulate in-situ effective stresses, which can be used for the cases of widely varying earth pressure coefficient at rest, even greater than unity. Based on the thermal-hydraulic analogy, a numerical modeling technique is developed for seepage analysis. The above-mentioned methods can successfully simulate the initial stress condition in the soil that affects the failure mechanisms significantly. Many failures of sensitive clay slope are initiated by toe erosion. Conducting LDFE simulations, the potential conditions required for a flowslide and a spread are identified. The type and extent (retrogression and run-out) of a landslide depend on a combination of several factors related to geometry and soil properties. A single parameter, such as stability number, remolded shear strength, liquidity index or remolded energy, may not always be suitable to categorize failure type. Increasing lateral earth pressure coefficient at-rest shows a trend of occurring spreads, while a low remolded shear strength and favorable conditions for rapid displacement of debris result in flowslides. The comparison of LDFE simulations and post-slide investigations of the 2010 Saint-Jude landslide show that the present numerical simulations can explain several features of the landslide, including the effects of seepage and an opposite riverbank on progressive failure. Finally, pseudostatic and dynamic analyses are performed using the developed LDFE method to study the progressive formation of failure planes in clay slopes subjected to earthquake loading. The LDFE modeling in Eulerian approach can simulate the large displacement of the failed soil blocks, considering the reduction of shear strength due to strain-softening.
Landslides and Engineered Slopes. Experience, Theory and Practice contains the invited lectures and all papers presented at the 12th International Symposium on Landslides, (Naples, Italy, 12-19 June 2016). The book aims to emphasize the relationship between landslides and other natural hazards. Hence, three of the main sessions focus on Volcanic-induced landslides, Earthquake-induced landslides and Weather-induced landslides respectively, while the fourth main session deals with Human-induced landslides. Some papers presented in a special session devoted to "Subareal and submarine landslide processes and hazard” and in a “Young Session” complete the books. Landslides and Engineered Slopes. Experience, Theory and Practice underlines the importance of the classic approach of modern science, which moves from experience to theory, as the basic instrument to study landslides. Experience is the key to understand the natural phenomena focusing on all the factors that play a major role. Theory is the instrument to manage the data provided by experience following a mathematical approach; this allows not only to clarify the nature and the deep causes of phenomena but mostly, to predict future and, if required, manage similar events. Practical benefits from the results of theory to protect people and man-made works. Landslides and Engineered Slopes. Experience, Theory and Practice is useful to scientists and practitioners working in the areas of rock and soil mechanics, geotechnical engineering, engineering geology and geology.
This book presents selected articles from the 5th International Conference on Geotechnics, Civil Engineering Works and Structures, held in Ha Noi, focusing on the theme “Innovation for Sustainable Infrastructure”, aiming to not only raise awareness of the vital importance of sustainability in infrastructure development but to also highlight the essential roles of innovation and technology in planning and building sustainable infrastructure. It provides an international platform for researchers, practitioners, policymakers and entrepreneurs to present their recent advances and to exchange knowledge and experience on various topics related to the theme of “Innovation for Sustainable Infrastructure”.
Landslides and Their Control provides information on slope stability; the origin of slope movements; and methods on how they are investigated, controlled, and prevented. The book covers topics such as soil and rock mechanics; the influence of ground water on landslides; as well as other factors that produce sliding movement. The book also includes the different types of landslides as well as examples from different territories; its investigation, interpretation of stability, and stability analysis; and corrective measures involved. The monograph is recommended for geologists who would like to know more about the nature of landslides and how they can be prevented, especially those who work in service for the government.
Explores soil as a nexus for water, chemicals, and biologically coupled nutrient cycling Soil is a narrow but critically important zone on Earth's surface. It is the interface for water and carbon recycling from above and part of the cycling of sediment and rock from below. Hydrogeology, Chemical Weathering, and Soil Formation places chemical weathering and soil formation in its geological, climatological, biological and hydrological perspective. Volume highlights include: The evolution of soils over 3.25 billion years Basic processes contributing to soil formation How chemical weathering and soil formation relate to water and energy fluxes The role of pedogenesis in geomorphology Relationships between climate soils and biota Soils, aeolian deposits, and crusts as geologic dating tools Impacts of land-use change on soils The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Editors