Download Free Landau Lifshitz Equations Book in PDF and EPUB Free Download. You can read online Landau Lifshitz Equations and write the review.

This is a comprehensive introduction to Landau-Lifshitz equations and Landau-Lifshitz-Maxwell equations, beginning with the work by Yulin Zhou and Boling Guo in the early 1980s and including most of the work done by this Chinese group led by Zhou and Guo since. The book focuses on aspects such as the existence of weak solutions in multi dimensions, existence and uniqueness of smooth solutions in one dimension, relations with harmonic map heat flows, partial regularity and long time behaviors.The book is a valuable reference book for those who are interested in partial differential equations, geometric analysis and mathematical physics. It may also be used as an advanced textbook by graduate students in these fields.
Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.
Devoted to the foundation of mechanics, namely classical Newtonian mechanics, the subject is based mainly on Galileo's principle of relativity and Hamilton's principle of least action. The exposition is simple and leads to the most complete direct means of solving problems in mechanics.The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.
Course of Theoretical Physics, Volume 6: Fluid Mechanics discusses several areas of concerns regarding fluid mechanics. The book provides a discussion on the phenomenon in fluid mechanics and their intercorrelations, such as heat transfer, diffusion in fluids, acoustics, theory of combustion, dynamics of superfluids, and relativistic fluid dynamics. The text will be of great interest to researchers whose work involves or concerns fluid mechanics.
Covers the theory of electromagnetic fields in matter, and the theory of the macroscopic electric and magnetic properties of matter. There is a considerable amount of new material particularly on the theory of the magnetic properties of matter and the theory of optical phenomena with new chapters on spatial dispersion and non-linear optics. The chapters on ferromagnetism and antiferromagnetism and on magnetohydrodynamics have been substantially enlarged and eight other chapters have additional sections.
As data transfer rates increase within the magnetic recording industry, improvements in device performance and reliability crucially depend on the thorough understanding of nonlinear magnetization dynamics at a sub-nanoscale level. This book offers a modern, stimulating approach to the subject of nonlinear magnetization dynamics by discussing important aspects such as the Landau-Lifshitz-Gilbert (LLG) equation, analytical solutions, and the connection between the general topological and structural aspects of dynamics. An advanced reference for the study and understanding of nonlinear magnetization dynamics, it addresses situations such as the understanding of spin dynamics in short time scales and device performance and reliability in magnetic recording. Topics covered include nonlinear magnetization dynamics and the Landau-Lifshitz-Gilbert equation, nonlinear dynamical systems, spin waves, ferromagnetic resonance and pulsed magnetization switching. The book explains how to derive exact analytical solutions for the complete nonlinear problem and emphasises the connection between the general topological and structural aspects of nonlinear magnetization dynamics and the discretization schemes better suited to its numerical study. It is an exceptional research tool providing an advanced understanding of the study of magnetization dynamics in situations of fundamental and technological interest.
Quantum Mechanics, Third Edition: Non-relativistic Theory is devoted to non-relativistic quantum mechanics. The theory of the addition of angular momenta, collision theory, and the theory of symmetry are examined, together with spin, nuclear structure, motion in a magnetic field, and diatomic and polyatomic molecules. This book is comprised of 18 chapters and begins with an introduction to the basic concepts of quantum mechanics, with emphasis on the uncertainty principle, the principle of superposition, and operators, as well as the continuous spectrum and the wave function. The following chapters explore energy and momentum; Schrödinger's equation; angular momentum; and motion in a centrally symmetric field and in a magnetic field. Perturbation theory, spin, and the properties of quasi-classical systems are also considered. The remaining chapters deal with the identity of particles, atoms, and diatomic and polyatomic molecules. The final two chapters describe elastic and inelastic collisions. This monograph will be a valuable source of information for physicists.
A comprehensive textbook covering not only the ordinary theory of the deformation of solids, but also some topics not usually found in textbooks on the subject, such as thermal conduction and viscosity in solids.
This book constitutes the thoroughly refereed post-proceedings of the Third International Conference on Numerical Analysis and Its Applications, NAA 2004, held in Rousse, Bulgaria in June/July 2004. The 68 revised full papers presented together with 8 invited papers were carefully selected during two rounds of reviewing and improvement. All current aspects of numerical analysis are addressed. Among the application fields covered are computational sciences and engineering, chemistry, physics, economics, simulation, fluid dynamics, visualization, etc.
Collected Papers of L. D. Landau brings together the collected papers of L. D. Landau in the field of physics. The discussion is divided into the following sections: low-temperature physics (including superconductivity); solid-state physics; plasma physics; hydrodynamics; astrophysics; nuclear physics and cosmic rays; quantum mechanics; quantum field theory; and miscellaneous works. Topics covered include the intermediate state of supraconductors; the absorption of sound in solids; the properties of metals at very low temperatures; and production of showers by heavy particles. This volume is comprised of 100 chapters and begins with Landau's paper on the theory of the spectra of diatomic molecules, followed by his studies on the damping problem in wave mechanics; quantum electrodynamics in configuration space; electron motion in crystal lattices; and the internal temperature of stars. Some of Landau's theories, such as those of stars, energy transfer on collisions, phase transitions, and specific heat anomalies are discussed. Subsequent chapters focus on the structure of the undisplaced scattering line; the transport equation in the case of Coulomb interactions; scattering of light by light; and the origin of stellar energy. This book will be a valuable resource for physicists as well as physics students and researchers.