Download Free Lambda Calculus Types And Models Book in PDF and EPUB Free Download. You can read online Lambda Calculus Types And Models and write the review.

This introduction to lambda-calculus looks at aspects of the theory: combinatory logic, models, and type streams, showing how they interlink and underpin computer science.
This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.
Combinatory logic and lambda-calculus, originally devised in the 1920's, have since developed into linguistic tools, especially useful in programming languages. The authors' previous book served as the main reference for introductory courses on lambda-calculus for over 20 years: this long-awaited new version is thoroughly revised and offers a fully up-to-date account of the subject, with the same authoritative exposition. The grammar and basic properties of both combinatory logic and lambda-calculus are discussed, followed by an introduction to type-theory. Typed and untyped versions of the systems, and their differences, are covered. Lambda-calculus models, which lie behind much of the semantics of programming languages, are also explained in depth. The treatment is as non-technical as possible, with the main ideas emphasized and illustrated by examples. Many exercises are included, from routine to advanced, with solutions to most at the end of the book.
Graduate text on mathematical foundations of programming languages, and operational and denotational semantics.
This is a set of lecture notes that developed out of courses on the lambda calculus that the author taught at the University of Ottawa in 2001 and at Dalhousie University in 2007 and 2013. Topics covered in these notes include the untyped lambda calculus, the Church-Rosser theorem, combinatory algebras, the simply-typed lambda calculus, the Curry-Howard isomorphism, weak and strong normalization, polymorphism, type inference, denotational semantics, complete partial orders, and the language PCF.
Well-respected text for computer science students provides an accessible introduction to functional programming. Cogent examples illuminate the central ideas, and numerous exercises offer reinforcement. Includes solutions. 1989 edition.
The first comprehensive presentation of reduction semantics in one volume, and the first tool set for such forms of semantics. This text is the first comprehensive presentation of reduction semantics in one volume; it also introduces the first reliable and easy-to-use tool set for such forms of semantics. Software engineers have long known that automatic tool support is critical for rapid prototyping and modeling, and this book is addressed to the working semantics engineer (graduate student or professional language designer). The book comes with a prototyping tool suite to develop, explore, test, debug, and publish semantic models of programming languages. With PLT Redex, semanticists can formulate models as grammars and reduction models on their computers with the ease of paper and pencil. The text first presents a framework for the formulation of language models, focusing on equational calculi and abstract machines, then introduces PLT Redex, a suite of software tools for expressing these models as PLT Redex models. Finally, experts describe a range of models formulated in Redex. PLT Redex comes with the PLT Scheme implementation, available free at http://www.plt-scheme.org/. Readers can download the software and experiment with Redex as they work their way through the book.
This handbook with exercises reveals the mathematical beauty of formalisms hitherto mostly used for software and hardware design and verification.
This Festschrift is in honor of Chris Hankin, Professor at the Imperial College in London, UK, on the Occasion of His 65th Birthday. Chris Hankin is a Fellow of the Institute for Security Science and Technology and a Professor of Computing Science. His research is in cyber security, data analytics and semantics-based program analysis. He leads multidisciplinary projects focused on developing advanced visual analytics and providing better decision support to defend against cyber attacks. This Festschrift is a collection of scientific contributions related to the topics that have marked the research career of Professor Chris Hankin. The contributions have been written to honour Chris' career and on the occasion of his retirement.
The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance,minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc.The isomorphism has many aspects, even at the syntactic level:formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc.But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transformsproofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq).This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic.Key features- The Curry-Howard Isomorphism treated as common theme- Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics- Thorough study of the connection between calculi and logics- Elaborate study of classical logics and control operators- Account of dialogue games for classical and intuitionistic logic- Theoretical foundations of computer-assisted reasoning· The Curry-Howard Isomorphism treated as the common theme.· Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics · Thorough study of the connection between calculi and logics.· Elaborate study of classical logics and control operators.· Account of dialogue games for classical and intuitionistic logic.· Theoretical foundations of computer-assisted reasoning