Download Free Laboratory Methods In Infrared Spectroscopy Book in PDF and EPUB Free Download. You can read online Laboratory Methods In Infrared Spectroscopy and write the review.

2D infrared (IR) spectroscopy is a cutting-edge technique, with applications in subjects as diverse as the energy sciences, biophysics and physical chemistry. This book introduces the essential concepts of 2D IR spectroscopy step-by-step to build an intuitive and in-depth understanding of the method. This unique book introduces the mathematical formalism in a simple manner, examines the design considerations for implementing the methods in the laboratory, and contains working computer code to simulate 2D IR spectra and exercises to illustrate involved concepts. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded from the authors' website, available at www.cambridge.org/9781107000056.
Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis presents the Fourier Transform Infrared Spectroscopy (FT-IR) as a valuable analytic tool in solving industrial and laboratory chemical problems. The text provides chapters that deal with the various applications of FT-IR such as the characterization of organic and inorganic superconductors; the study of forensic materials such as controlled drug particles, fragments of polymers, textile fibers, and explosives; identification and quantification of impurities and measurement of epitaxial thickness in silicon; bulk and surface studies and microanalyses of industrial materials; and the identification or determination of unknown compounds. Chemists, industrial researchers, and product engineers will find the book useful.
This book provides practical information on the use of infrared (IR) spectroscopy for the analysis of materials found in cultural objects. Designed for scientists and students in the fields of archaeology, art conservation, microscopy, forensics, chemistry, and optics, the book discusses techniques for examining the microscopic amounts of complex, aged components in objects such as paintings, sculptures, and archaeological fragments. Chapters include the history of infrared spectroscopy, the basic parameters of infrared absorption theory, IR instrumentation, analysis methods, sample collection and preparation, and spectra interpretation. The authors cite several case studies, such as examinations of Chumash Indian paints and the Dead Sea Scrolls. The Institute’s Tools for Conservation series provides practical scientific procedures and methodologies for the practice of conservation. The series is specifically directed to conservation scientists, conservators, and technical experts in related fields.
Practical Sampling Techniques for Infrared Analysis provides a single-source guide to sample handling for routine analysis in infrared spectroscopy using commercially available instrumentation and accessories. Following a review of infrared spectroscopic theory, chapters consider individual techniques such as transmission methodology (e.g., solution cells, KBr pellets), internal reflectance, diffuse reflectance, photoacoustic FT-IR, infrared microscopy, GC/FT-IR, and quantitative analysis. In addition, two chapters elaborate on both typical and unusual samples and problems encountered in industrial laboratories and the process by which a spectroscopist chooses the most effective technique. Various short courses on infrared analysis are also listed. Practical Sampling Techniques for Infrared Analysis will be an important guide for all professional analytical chemists and technicians.
It is estimated that there are about 10 million organic chemicals known, and about 100,000 new organic compounds are produced each year. Some of these new chemicals are made in the laboratory and some are isolated from natural products. The structural determination of these compounds is the job of the chemist. There are several instrumental techniques used to determine the structures of organic compounds. These include NMR, UV/visible, infrared spectroscopy, mass spectrometry, and X-ray crystallography. Of all the instrumental techniques listed, infrared spectroscopy and mass spectrometry are the two most popular techniques, mainly because they tend to be less expensive and give us the most structural information. This book is an introductory text designed to acquaint undergraduate and graduate students with the basic theory and interpretative techniques of infrared spectroscopy. Much of the material in this text has been used over a period of several years for teaching courses in materials characterization and chemical analysis. It presents the infrared spectra of the major classes of organic compounds and correlates the infrared bands (bond vibrations) of each spectrum with the structural features of the compound it represents. This has been done for hydrocarbons, organic acids, ketones, aldehydes, esters, anhydrides, phenols, amines, and amides. The text discusses the origin of the fragments, techniques, innovations, and applications in infrared spectroscopy. It is interspersed with many illustrations, examples, an adequate but not overwhelming bibliography, and problems for students. It will serve as a lecture text for a one-semester course in infrared spectroscopy or can be used to teach the infrared spectroscopy portion of a broader course in material characterization and chemical analysis.
Fourier Transform Infrared (FTIR) spectroscopy applies the principle that molecular vibrations can absorb infrared radiation in the range of the electromagnetic radiation. This book discusses methods and provides new research on FTIR. Chapter One reviews the advances in the analysis of biological systems by means of FTIR spectroscopy. Chapter Two studies the last advances of infrared spectroscopy applied to the analysis of lignocellulosic materials. Chapter Three presents the Fourier transform infrared spectroscopic, coupled with chemometric tools, to characterize organic matter transformations during the composting process. Chapter Four focuses on applications of FTIR spectroscopy in the wine industry.
Solid State Development and Processing of Pharmaceutical Molecules A guide to the lastest industry principles for optimizing the production of solid state active pharmaceutical ingredients Solid State Development and Processing of Pharmaceutical Molecules is an authoritative guide that covers the entire pharmaceutical value chain. The authors—noted experts on the topic—examine the importance of the solid state form of chemical and biological drugs and review the development, production, quality control, formulation, and stability of medicines. The book explores the most recent trends in the digitization and automation of the pharmaceutical production processes that reflect the need for consistent high quality. It also includes information on relevant regulatory and intellectual property considerations. This resource is aimed at professionals in the pharmaceutical industry and offers an in-depth examination of the commercially relevant issues facing developers, producers and distributors of drug substances. This important book: Provides a guide for the effective development of solid drug forms Compares different characterization methods for solid state APIs Offers a resource for understanding efficient production methods for solid state forms of chemical and biological drugs Includes information on automation, process control, and machine learning as an integral part of the development and production workflows Covers in detail the regulatory and quality control aspects of drug development Written for medicinal chemists, pharmaceutical industry professionals, pharma engineers, solid state chemists, chemical engineers, Solid State Development and Processing of Pharmaceutical Molecules reviews information on the solid state of active pharmaceutical ingredients for their efficient development and production.
This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information—for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity—FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader’s convenience.