Download Free Label Free Monitoring Of Cells In Vitro Book in PDF and EPUB Free Download. You can read online Label Free Monitoring Of Cells In Vitro and write the review.

This book is dedicated to label-free, non-invasive monitoring of cell-based assays and it comprises the most widely applied techniques. Each approach is described and critically evaluated by an expert in the field such that researchers get an overview on what is possible and where the limitations are. The book provides the theoretical basis for each technique as well as the most successful and exciting applications. Label-free bioanalytical techniques have been known for a long time as valuable tools to monitor adsorption processes at the solid-liquid interface in general – and biomolecular interaction analysis (BIA) in particular. The underlying concepts have been progressively transferred to the analysis of cell-based assays. The strength of these approaches is implicitly given with the name 'label-free': the readout is independent of any label, reagent or additive that contaminates the system under study and potentially affects its properties. Thus, label-free techniques provide an unbiased analytical perspective in the sense that the sample is not manipulated by additives but pure. They are commonly based on physical principles and read changes in integral physical properties of the sample like refractive index, conductivity, capacitance or elastic modulus to mention just a few. Even though it is not implied in the name, label-free approaches usually monitor the cells under study non-invasively meaning that the amplitude of the signal (e.g. electric field strength, mechanical elongation) that is used for the measurement is too low to interfere or affect. In contrast to label-based analytical techniques that are commonly restricted to a single reading at a predefined time point, label-free approaches allow for a continuous observation so that the dynamics of the biological system or reaction become accessible.
Whether the question is one of basic cell survival, or whether it is being used to correlate cell number to some other factor such as matrix synthesis, an estimate of cell viability is universally required. In Mammalian Cell Viability: Methods and Protocols, experts in the field describe methods from the most basic which can be performed in any laboratory, to some which require specific pieces of equipment. Initially focusing on methods for monolayer and suspension cells, later chapters describe methods for determining viability within tissue sections and 3 dimensional culture systems. Finally, methods requiring highly specialized equipment are described in order to explain what is possible. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital tips on troubleshooting and avoiding known pitfalls. Practical and adaptable, Mammalian Cell Viability: Methods and Protocols serves as a self-contained laboratory manual useful to both experienced researchers and those new to this incredibly important and influential field.
This thesis describes novel substrate embedded physical sensors that can be used to monitor different types of cell-based assays non-invasively and label-free. The sensors described provide integrative information of the cells under study with an adaptable time resolution (ranging from milliseconds to days). This information about the dynamic cell response to chemical, physical or biological stimuli defines a new paradigm in fundamental biomedical research. The author, Maximilian Oberleitner, describes approaches in which the cells are directly grown on different sensor surfaces (gold-film electrodes, shear wave resonators or dye-doped polymer films). This approach, with the reacting cells in particularly close proximity and contact with the sensor surface, is key to a remarkable sensitivity, opening the way for a variety of new applications. This thesis not only introduces the fundamentals of each approach, but it also describes in great detail the design principles and elucidates the boundary conditions of the new sensors.
This textbook shall introduce the students to 3D cell culture approaches and applications. An overview on existing techniques and equipment is provided and insight into various aspects and challenges that researchers need to consider and face during culture of 3D cells is given. The reader will learn the importance of physiological cell, tissue and organ models and gains important knowledge on 3D analytics. This textbook deepens selected aspects of the textbook “Cell Culture Technology”, which also is published in this series, while offering extended insight into 3D cell culture. The concept of the textbook encompasses various lectures ranging from basics in cell cultivation, tissue engineering, biomaterials and biocompatibility, in vitro test systems and regenerative medicine. The textbook addresses Master- and PhD students interested and/or working in the field of modern cell culture applications and will support the understanding of the essential strategies in 3D cell culture and waken awareness for the potentials and challenges of this application.
The advances of live cell video imaging and high-throughput technologies for functional and chemical genomics provide unprecedented opportunities to understand how biological processes work in subcellularand multicellular systems. The interdisciplinary research field of Video Bioinformatics is defined by BirBhanu as the automated processing, analysis, understanding, data mining, visualization, query-basedretrieval/storage of biological spatiotemporal events/data and knowledge extracted from dynamic imagesand microscopic videos. Video bioinformatics attempts to provide a deeper understanding of continuousand dynamic life processes.Genome sequences alone lack spatial and temporal information, and video imaging of specific moleculesand their spatiotemporal interactions, using a range of imaging methods, are essential to understandhow genomes create cells, how cells constitute organisms, and how errant cells cause disease. The bookexamines interdisciplinary research issues and challenges with examples that deal with organismal dynamics,intercellular and tissue dynamics, intracellular dynamics, protein movement, cell signaling and softwareand databases for video bioinformatics.Topics and Features• Covers a set of biological problems, their significance, live-imaging experiments, theory andcomputational methods, quantifiable experimental results and discussion of results.• Provides automated methods for analyzing mild traumatic brain injury over time, identifying injurydynamics after neonatal hypoxia-ischemia and visualizing cortical tissue changes during seizureactivity as examples of organismal dynamics• Describes techniques for quantifying the dynamics of human embryonic stem cells with examplesof cell detection/segmentation, spreading and other dynamic behaviors which are important forcharacterizing stem cell health• Examines and quantifies dynamic processes in plant and fungal systems such as cell trafficking,growth of pollen tubes in model systems such as Neurospora Crassa and Arabidopsis• Discusses the dynamics of intracellular molecules for DNA repair and the regulation of cofilintransport using video analysis• Discusses software, system and database aspects of video bioinformatics by providing examples of5D cell tracking by FARSIGHT open source toolkit, a survey on available databases and software,biological processes for non-verbal communications and identification and retrieval of moth imagesThis unique text will be of great interest to researchers and graduate students of Electrical Engineering,Computer Science, Bioengineering, Cell Biology, Toxicology, Genetics, Genomics, Bioinformatics, ComputerVision and Pattern Recognition, Medical Image Analysis, and Cell Molecular and Developmental Biology.The large number of example applications will also appeal to application scientists and engineers.Dr. Bir Bhanu is Distinguished Professor of Electrical & C omputer Engineering, Interim Chair of theDepartment of Bioengineering, Cooperative Professor of Computer Science & Engineering, and MechanicalEngineering and the Director of the Center for Research in Intelligent Systems, at the University of California,Riverside, California, USA.Dr. Prue Talbot is Professor of Cell Biology & Neuroscience and Director of the Stem Cell Center and Core atthe University of California Riverside, California, USA.
In the United States, hospitals annually report over 5 million cases of infectious-disease-related illnesses: clinical microbiology laboratories in these hospitals are engaged in detecting and identifying the pathogenic microorganisms in clinical specimens collected from these patients with suspected infections. Clearly, the timely and accurate detection/identification of these microbial pathogens is critical for patient treatment decisions and outcomes for millions of patients each year. Despite an appreciation that the outcome of an infectious-disease-related illness is directly related to the time required to detect and identify a microbial pathogen, clinical microbiology laboratories in the United States as well as worldwide have long been hampered by traditional culture-based assays, which may require prolonged incubation time for slowly growing microorganisms such as Mycobacterium tuberculosis. Moreover, traditional culture-based assays often require multiple steps with additional time needed for discernment of species and/or detection of antimicrobial resistance. Finally, these traditional, slow multistep culture-based assays are labor-intensive and required skilled clinical microbiologists at the bench. Over the past several decades, advanced molecular techniques in diagnostic microbiology quietly have been revolutionizing the practice of clinical microbiology in the hospital setting. Indeed, molecular diagnostic testing in general and nucleic-acid-based amplification methods in particular have been heralded as diagnostic tools for the new millennium. There is no question that the development of rapid molecular techniques for nucleic acid amplification/characterization combined with automation and user-friendly software has greatly broadened the diagnostic capabilities of the clinical microbiology laboratory. These technical advances in molecular microbiology over the first decade of the 21st Century have profoundly influenced the physical structure of clinical microbiology laboratories as well as their staffing patterns, workflow, and turnaround time. These molecular microbiology advances have also resulted in the need for a revised and updated second edition of Advanced Techniques in Diagnostic Microbiology. This second edition again provides an updated and comprehensive description of the ongoing evolution of molecular methods for the diagnosis of infectious diseases. In addition, many new chapters have been added, including a chapter on the clinical interpretation and relevance of advanced technique results. The second edition, like the first edition, includes both a “techniques” section describing the latest molecular techniques and an “applications” section describing how these advanced molecular techniques are being used in the clinical setting. Finally, the second edition, like the first edition, utilizes a diverse team of authors who have compiled chapters that provide the reader with comprehensive and useable information on advanced molecular microbiology techniques.
This text covers new techniques and applications in chemical genomics for researchers, professionals and graduates in biology, biomedicine and chemistry.
Tumor Immunology and Immunotherapy - Cellular Methods Part A, Volume 631, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. New chapters include Detection of intracellular cytokine production by T cells with flow cytometry, High-throughput identification of human antigen-specific CD8+ and CD4+ T cells using soluble pMHC multimers, In vitro assays for effector T cell functions and activity of immunostimulatory antibodies, Ex vivo energetic profiling of tumor cells and T cells from mouse models and human samples, A cytofluorimetric assay to evaluate T cell polyfunctionality, and much more.
This book focuses on cell- and molecule-based biosensors using micro/nano devices as transducers. After providing basic information on micro/nano cell- and molecule-based biosensors, it introduces readers to the basic structures and properties of micro/nano materials and their applications. The topics covered provide a comprehensive review of the current state of the art in micro/nano cell- and molecule-based biosensors as well as their future development trends, ensuring the book will be of great interest to the interdisciplinary community active in this area: researchers, engineers, biologists, medical scientists, and all those whose work involves related interdisciplinary research and applications. Dr. Ping Wang is a Professor in Department of Biomedical Engineering at Zhejiang University, Hangzhou, China. Dr. Chunsheng Wu is a Professor in Medical School at Xi’an Jiaotong University, Xi’an, China. Dr. Ning Hu is an Assistant researcher in Department of Biomedical Engineering at Zhejiang University and a Postdoctoral researcher in Medical School at Harvard University, Boston, USA. Dr. K. Jimmy Hsia is a Professor in Department of Biomedical Engineering at Carnegie Mellon University, Pittsburgh, USA.