Download Free La Commande Robuste Par Loop Shaping Book in PDF and EPUB Free Download. You can read online La Commande Robuste Par Loop Shaping and write the review.

L’approche loop-shaping consiste en l’obtention d’une spécification relative à la boucle ouverte de l’asservissement à partir de spécifications relatives à divers transferts en boucle fermée. Parce qu’il est plus simple de travailler sur un unique transfert (la boucle ouverte) plutôt que sur une multitude de transferts bouclés, cette approche s’avère particulièrement adaptée au contexte industriel. Cet ouvrage se concentre sur la déclinaison des spécifications de haut niveau vers une spécification de type loop-shaping, puis sur les techniques permettant d’intégrer pleinement cette démarche pour le calcul de correcteurs robustes et performants, en particulier par la synthèse H?. Modelage de la boucle ouverte escomptée, la synthèse H? par loop-shaping permet par ailleurs de stabiliser toute une boule de modèles grâce à la notion de gap métrique, ce qui s’avère particulièrement intéressant pour la prise en compte de contraintes industrielles. La volonté accrue de réaliser des asservissements à moindre coût et de plus en plus performants mène à l’optimisation de cette technique, la rendant indispensable à son domaine.
In the automotive industry, a Control Engineer must design a unique control law that is then tested and validated on a single prototype with a level of reliability high enough to to meet a number of complex specifications on various systems. In order to do this, the Engineer uses an experimental iterative process (Trial and Error phase) which relies heavily on his or her experience. This book looks to optimise the methods for synthesising servo controllers ny making them more direct and thus quicker to design. This is achieved by calculating a final controller to directly tackle the high-end system specs.
Fuzzy control theory is an emerging area of research. At the core of many engineering problems is the problem of control of different systems. These systems range all the way from classical inverted pendulum to auto-focusing system of a digital camera. Fuzzy control systems have demonstrated their enhanced performance in all these areas. Progress in this domain is very fast and there was critical need of a book that captures all the recent advances both in theory and in applications. Serving this purpose, this book is conceived. This book will provide you a very clear picture of current status of fuzzy control research. This book is intended for researchers, engineers, and postgraduate students specializing in fuzzy systems, control engineering, and robotics.
Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.
This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.
Data-Based Controller Design presents a comprehensive analysis of data-based control design. It brings together the different data-based design methods that have been presented in the literature since the late 1990’s. To the best knowledge of the author, these data-based design methods have never been collected in a single text, analyzed in depth or compared to each other, and this severely limits their widespread application. In this book these methods will be presented under a common theoretical framework, which fits also a large family of adaptive control methods: the MRAC (Model Reference Adaptive Control) methods. This common theoretical framework has been developed and presented very recently. The book is primarily intended for PhD students and researchers - senior or junior - in control systems. It should serve as teaching material for data-based and adaptive control courses at the graduate level, as well as for reference material for PhD theses. It should also be useful for advanced engineers willing to apply data-based design. As a matter of fact, the concepts in this book are being used, under the author’s supervision, for developing new software products in a automation company. The book will present simulation examples along the text. Practical applications of the concepts and methodologies will be presented in a specific chapter.
This book deals specifically with control theories relevant to the design of control units for switched power electronics devices, for the most part represented by DC–DC converters and supplies, by rectifiers of different kinds and by inverters with varying topologies. The theoretical methods for designing controllers in linear and nonlinear systems are accompanied by multiple case studies and examples showing their application in the emerging field of power electronics.
This book provides an update of the latest research in control of time delay systems and applications by world leading experts. It will appeal to engineers, researchers and students in Control.