Download Free Krishnan Sunder Subfactors And A New Countable Family Of Subfactors Related To Trees Book in PDF and EPUB Free Download. You can read online Krishnan Sunder Subfactors And A New Countable Family Of Subfactors Related To Trees and write the review.

Ludwig Eduard Boltzmann (1844-1906) was an Austrian physicist famous for his founding contributions in the fields of statistical mechanics and statistical thermodynamics. He was one of the most important advocates for atomic theory when that scientific model was still highly controversial. To commemorate the 100th anniversary of his death in Duino, the International Symposium ``Boltzmann's Legacy'' was held at the Erwin Schrodinger International Institute for Mathematical Physics in June 2006. This text covers a broad spectrum of topics ranging from equilibrium statistical and nonequilibrium statistical physics, ergodic theory and chaos to basic questions of biology and historical accounts of Boltzmann's work. Besides the lectures presented at the symposium the volume also contains contributions specially written for this occasion. The articles give a broad overview of Boltzmann's legacy to the sciences from the standpoint of some of today's leading scholars in the field. The book addresses students and researchers in mathematics, physics, and the history of science.
Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.
Mirror Symmetry has undergone dramatic progress since the Mathematical Sciences Research Institute (MSRI) workshop in 1991, whose proceedings constitute voluem I of this continuing collection. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics. Titles in this series are co-published, between the American Mathematical Society and International Press, Cambridge, MA, USA.
"This work is an outgrowth of a conference held at the Hebrew University in Jerusalem on Regulators in Analysis, Geometry and Number Theory, and should appeal to a broad audience of graduate students and research mathematicians."--BOOK JACKET.
The huge bandwidth of optical fiber was recognized back in the 1970s during the early development of fiber optics technology. For the last two decades, the capacity of experimental and deployed systems has been increasing at a rate of 100-fold each decade - a rate exceeding the increase of integrated circuit speeds. Today, optical communication in the public communication networks has developed from the status of a curiosity into being the dominant technology. Various great challenges arising from the deployment of wavelength division multiplexing (WDM) have attracted much effort from many researchers. Indeed, optical networking has been a fertile ground for both theoretical research and experimental studies. This monograph presents contributions from the author's past and ongoing research in the field of optical networking. The ideas presented focus more on graph-theoretical and algorithmic aspects of optical networks. Although this book is limited to the author's own research, there are many outstanding achievements made by other individuals which are cited throughout. Without the inspiration of their efforts, this monograph would never have been possible. Audience: Research workers and professionals from mathematics, computer science, and engineering with an interest in algorithms, graph theory, telecommunications, networking and optical devices.
Although special complex tori, namely abelian varieties, have been investigated for nearly 200 years, not much is known about arbitrary complex tori."--BOOK JACKET. "Complex Tori is aimed at the mathematician and graduate student and will be useful in the classroom or as a resource for self-study."--BOOK JACKET.
Galois theory is one of the most beautiful subjects in mathematics, but it is heard to appreciate this fact fully without seeing specific examples. Numerous examples are therefore included throughout the text, in the hope that they will lead to a deeper understanding and genuine appreciation of the more abstract and advanced literature on Galois theory. This book is intended for beginning graduate students who already have some background in algebra, including some elementary theoryof groups, rings and fields. The expositions and proofs are intended to present Galois theory in as simple a manner as possible, sometimes at the expense of brevity. The book is for students and intends to make them take an active part in mathematics rather than merely read, nod their heads atappropriate places, skip the exercises, and continue on to the next section.
This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.