Download Free Knowledge Graphs Semantics Machine Learning And Languages Book in PDF and EPUB Free Download. You can read online Knowledge Graphs Semantics Machine Learning And Languages and write the review.

This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies.
Semantic computing is an integral part of modern technology, an essential component of fields as diverse as artificial intelligence, data science, knowledge discovery and management, big data analytics, e-commerce, enterprise search, technical documentation, document management, business intelligence, and enterprise vocabulary management. This book presents the proceedings of SEMANTICS 2023, the 19th International Conference on Semantic Systems, held in Leipzig, Germany, from 20 to 22 September 2023. The conference is a pivotal event for those professionals and researchers actively engaged in harnessing the power of semantic computing, an opportunity to increase their understanding of the subject’s transformative potential while confronting its practical limitations. Attendees include information managers, IT architects, software engineers, and researchers from a broad spectrum of organizations, including research facilities, non-profit entities, public administrations, and the world's largest corporations. For this year’s conference a total of 54 submissions were received in response to a call for papers. These were subjected to a rigorous, double-blind review process, with at least three independent reviews conducted for each submission. The 16 papers included here were ultimately accepted for presentation, with an acceptance rate of 29.6%. Areas covered include novel research challenges in areas such as data science, machine learning, logic programming, content engineering, social computing, and the Semantic Web. The book provides an up-to-date overview, which will be of interest to all those wishing to stay abreast of emerging trends and themes within the vast field of semantic computing.
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence. The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
This book constitutes the thoroughly refereed proceedings of the Third Iberoamerican Conference, KGSWC 2021, held in Kingsville, Texas, USA, in November 2021.* The 22 full and 2 short papers presented were carefully reviewed and selected from 85 submissions. The papers cover topics related to software and its engineering, information systems, software creation and management, World Wide Web, web data description languages, and others. *Due to the Covid-19 pandemic the conference was held virtually.
Recent combinations of semantic technology and artificial intelligence (AI) present new techniques to build intelligent systems that identify more precise results. Semantic AI in Knowledge Graphs locates itself at the forefront of this novel development, uncovering the role of machine learning to extend the knowledge graphs by graph mapping or corpus-based ontology learning. Securing efficient results via the combination of symbolic AI and statistical AI such as entity extraction based on machine learning, text mining methods, semantic knowledge graphs, and related reasoning power, this book is the first of its kind to explore semantic AI and knowledge graphs. A range of topics are covered, from neuro-symbolic AI, explainable AI and deep learning to knowledge discovery and mining, and knowledge representation and reasoning. A trailblazing exploration of semantic AI in knowledge graphs, this book is a significant contribution to both researchers in the field of AI and data mining as well as beginner academicians.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.