Download Free Klystrons Traveling Wave Tubes Magnetrons Crossed Field Amplifiers And Gyrotrons Book in PDF and EPUB Free Download. You can read online Klystrons Traveling Wave Tubes Magnetrons Crossed Field Amplifiers And Gyrotrons and write the review.

Microwave tubes are vacuum electron devices used for the generation and amplification of radio frequencies in the microwave range. An established technology area, the use of tubes remains essential in the field today for high-power applications. The culmination of the authorOCOs 50 years of industry experience, this authoritative resource offers you a thorough understanding of the operations and major classes of microwave tubes.Minimizing the use of advanced mathematics, the book places emphasis on clear qualitative explanations of phenomena. This practical reference serves as an excellent introduction for newcomers to the field and offers established tube engineers a comprehensive refresher. Professionals find coverage of all major tube classifications, including klystrons, traveling wave tubes (TWTs), magnetrons, cross field amplifiers, and gyrotrons."
Microwave tubes are vacuum electron devices used for the generation and amplification of radio frequencies in the microwave range. An established technology area, the use of tubes remains essential in the field today for high-power applications. The culmination of the author's 50 years of industry experience, this authoritative resource offers you a thorough understanding of the operations and major classes of microwave tubes. Minimizing the use of advanced mathematics, the book places emphasis on clear qualitative explanations of phenomena. This practical reference serves as an excellent introduction for newcomers to the field and offers established tube engineers a comprehensive refresher. Professionals find coverage of all major tube classifications, including klystrons, traveling wave tubes (TWTs), magnetrons, cross field amplifiers, and gyrotrons.
Get up-to-speed on the theory, principles and design of vacuum electron devices.
Explore the latest research avenues in the field of high-power microwave sources and metamaterials A stand-alone follow-up to the highly successful High Power Microwave Sources and Technologies, the new High Power Microwave Sources and Technologies Using Metamaterials, demonstrates how metamaterials have impacted the field of high-power microwave sources and the new directions revealed by the latest research. It’s written by a distinguished team of researchers in the area who explore a new paradigm within which to consider the interaction of microwaves with material media. Providing contributions from multiple institutions that discuss theoretical concepts as well as experimental results in slow wave structure design, this edited volume also discusses how traditional periodic structures used since the 1940s and 1950s can have properties that, until recently, were attributed to double negative metamaterial structures. The book also includes: A thorough introduction to high power microwave oscillators and amplifiers, as well as how metamaterials can be introduced as slow wave structures and other components Comprehensive explorations of theoretical concepts in dispersion engineering for slow wave structure design, including multi-transmission line models and particle-in-cell code virtual prototyping models Practical discussions of experimental measurements in dispersion engineering for slow wave structure design In-depth examinations of passive and active components, as well as the temporal evolution of electromagnetic fields High Power Microwave Sources and Technologies Using Metamaterials is a perfect resource for graduate students and researchers in the areas of nuclear and plasma sciences, microwaves, and antennas.
A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents the most advanced theory, methods and physics in a gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars. Chao-Hai Du and Pu-Kun Liu are both professors at Peking University.
Written by an internationally recognized as an expert on the subject of microwave (MW) tubes, this book presents and describes the many types of microwave tubes, and despite competition from solid-state devices (those using GaN, SiC, et cetera), which continue to be used widely and find new applications in defense, communications, medical, and industrial drying. Helix traveling wave tubes (TWTs), as well as coupled cavity TWTs are covered. Klystrons, and how they work, are described, along with the physics behind it and examples of devices and their uses. Vacuum electron devices are explained in detail and examines the harsh environment that must exist in tubes if they are to operate properly. The secondary emission process and its role in the operation of crossed-field devices is also discussed. The design of collectors for linear-beam tubes, including power dissipation and power recovery, are explored. Discussions of important noise sources and techniques that can be used to minimize their effects are also included. Presented in full color, this book contains a balance of practical and theoretical material so that those new to microwave tubes as well as experienced microwave tube technicians, engineers, and managers can benefit from its use.
Our aim in this book is to present a bird's-eye view of microwave tubes (MWTs) which continue to be important despite competitive incursions from solid-state devices (SSDs). We have presented a broad and introductory survey which we hope the readers would be encouraged to read rather than going through lengthier books, and subsequently explore the field of MWTs further in selected areas of relevance to their respective interests. We hope that the present book would motivate newcomers to pursue research in MWTs and apprise them as well as decision makers of the salient features and prospects of as well as the trends of progress in MWTs. The scope of ever expanding applications of MWTs in the high power and high frequency regime will sustain and intensify the research and development in MWTs in coming years.
The first edition of High Power Microwaves was considered to be the defining book for this field. Not merely updated but completely revised and rewritten, the second edition continues this tradition. Written from a systems perspective, the book provides a unified, coherent presentation of the fundamentals in this rapidly changing field. The p
The Traveling Wave Tubes (TWT) is a powerful vacuum electronic device used to amplify radio-frequency (RF) signals as well as numerous applications such as radar, television and telephone satellite communications. This monograph is devoted to the author's original theoretical developments in the theory of a traveling wave tube (TWT).Most of the monograph is the author's original work on an analytical theory of TWTs. It is a constructive Lagrangian field theory of TWT in which the electron beam (e-beam) is represented by one-dimensional multi-stream electron flow and the guiding slow-wave structure is represented by possibly non-uniform multi-transmission line (MTL). The proposed analytic theory accounts for a number of electron plasma phenomena including space-charge effects such as electron-to-electron repulsion (debunching), convective instabilities, wave-particle interaction, amplifying waves and more. It allows, in particular, to (i) identify origins of the wave-particle interaction and the system convective instability (exponential growth); (ii) evaluate the energy transfer rate from the e-beam to the electromagnetic radiation; (iii) identify instability modal branches which under condition of sufficiently strong coupling between the e-beam and the MTL can cover ideally all frequencies.