Download Free Kinetics Of Metallurgical Processes Book in PDF and EPUB Free Download. You can read online Kinetics Of Metallurgical Processes and write the review.

This book is intended as a text for upper undergraduate and graduate courses on kinetics of metallurgical processes for students of materials science, metallurgical engineering, and chemical engineering. Focusing on basic and essential topics, selected from the authors’ teaching and research, it serves as a comprehensive guide to metallurgical kinetics. Chapters 1–10 discuss the “logic” of various kinetics processes, while Chapter 11 explores the systematic analysis of raw rate data generated from controlled experiments. The final chapters illustrate how the fundamental concept of thermal activation is used to describe the kinetics of rate-dependent plastic deformation and creep fracture. With numerous examples, illustrations, and step-by-step tutorials, it is ideally suited for both self-study and classroom use. The examples were selected from research papers to highlight how the topics discussed can be, and are, used to solve real-world technological problems. Providing a comprehensive list of resources for further study, and end-of-chapter review questions to help students test their knowledge, it can be used for university coursework or as a text for professional development courses.
Problems in Metallurgical Thermodynamics and Kinetics provides an illustration of the calculations encountered in the study of metallurgical thermodynamics and kinetics, focusing on theoretical concepts and practical applications. The chapters of this book provide comprehensive account of the theories, including basic and applied numerical examples with solutions. Unsolved numerical examples drawn from a wide range of metallurgical processes are also provided at the end of each chapter. The topics discussed include the three laws of thermodynamics; Clausius-Clapeyron equation; fugacity, activity, and equilibrium constant; thermodynamics of electrochemical cells; and kinetics. This book is beneficial to undergraduate and postgraduate students in universities, polytechnics, and technical colleges.
This book is dedicated to the processes of mineral transformation, recycling and reclamation of metals, for the purpose of turning metals and alloys into a liquid state ready for pouring. Even though "process metallurgy" is one of the oldest technologies implemented by man, technological innovation, with the development of processes that are both focused on product quality and economically and ecologically efficient, continues to be at the heart of these industries. This book explains the physico-chemical bases of transformations, vital to their understanding and control (optimization of operational conditions), and the foundations in terms of "process engineering" (heat and matter assessment, process coupling: chemical reactions and transport phenomena), vital to the optimal execution and analysis of transformation process operations. This book is addressed to students in the field of metallurgy and to engineers facing the problem of metal and alloy development (operation of an industrial unit or development of a new process).
Fundamentals of Metallurgical Processes, Second Edition reviews developments in the design, control, and efficiency of metallurgical processes. Topics covered include thermodynamic functions and solutions as well as experimental and bibliographical methods, heterogeneous reactions, metal extraction, and iron and steelmaking. This book is comprised of eight chapters and begins with an overview of the fundamentals of thermodynamics (functions, relationships, and behavior of solutions), followed by a discussion on methods of obtaining thermodynamic data from tables and graphs and by experiment. The kinetics of heterogeneous reactions in metallurgy are examined next, with particular reference to heterogeneous catalysis and mass transfer between immiscible liquid phases. The following chapters focus on the extraction of metals from oxides, sulfides, and halides; the production of iron and steel; the structure and properties of slags; slag/metal reactions; and equilibria in iron and steel production. The final chapter consists entirely of solved problems. This monograph will be of interest to metallurgists and materials scientists.
This book covers various metallurgical topics, viz. roasting of sulfide minerals, matte smelting, slag, reduction of oxides and reduction smelting, interfacial phenomena, steelmaking, secondary steelmaking, role of halides in extraction of metals, refining, hydrometallurgy and electrometallurgy. Each chapter is illustrated with appropriate examples of applications of the technique in extraction of some common, reactive, rare or refractory metal together with worked out problems explaining the principle of the operation.
Primarily intended for the undergraduate students of metallurgical engineering, this book provides a firm foundation for the study of the fundamental principles of transport processes and kinetics of the chemical reactions that greatly help in carrying out a complete analysis of the rate processes in metallurgy. Systematically organized in eight chapters, the book provides a comprehensive treatment and balanced coverage of topics such as kinetic properties of fluids, heat transfer, mass transfer, techniques of dimensional analysis, treatment of transport problems by means of the boundary layer theory, reaction kinetics, and also makes a study of simultaneous transfer of heat, mass and momentum for various metallurgical phenomena. Every major concept introduced is worked out, through suitable solved examples, to a numerical conclusion. In addition, each chapter concludes with a wide variety of review questions and problems to aid further understanding of the subject.
This book is written specially for the students of B.E./B.Tech. of Metallurgical and Materials Engineering. It also serves the needs of allied scientific disciplines at the undergraduate, graduate level and practising professional engineers
A classroom-tested textbook providing a fundamental understandingof basic kinetic processes in materials This textbook, reflecting the hands-on teaching experience of itsthree authors, evolved from Massachusetts Institute of Technology'sfirst-year graduate curriculum in the Department of MaterialsScience and Engineering. It discusses key topics collectivelyrepresenting the basic kinetic processes that cause changes in thesize, shape, composition, and atomistic structure of materials.Readers gain a deeper understanding of these kinetic processes andof the properties and applications of materials. Topics are introduced in a logical order, enabling students todevelop a solid foundation before advancing to more sophisticatedtopics. Kinetics of Materials begins with diffusion, offering adescription of the elementary manner in which atoms and moleculesmove around in solids and liquids. Next, the more complex motion ofdislocations and interfaces is addressed. Finally, still morecomplex kinetic phenomena, such as morphological evolution andphase transformations, are treated. Throughout the textbook, readers are instilled with an appreciationof the subject's analytic foundations and, in many cases, theapproximations commonly used in the field. The authors offer manyextensive derivations of important results to help illuminate theirorigins. While the principal focus is on kinetic phenomena incrystalline materials, select phenomena in noncrystalline materialsare also discussed. In many cases, the principles involved apply toall materials. Exercises with accompanying solutions are provided throughoutKinetics of Materials, enabling readers to put their newfoundknowledge into practice. In addition, bibliographies are offeredwith each chapter, helping readers to investigate specializedtopics in greater detail. Several appendices presenting importantbackground material are also included. With its unique range of topics, progressive structure, andextensive exercises, this classroom-tested textbook provides anenriching learning experience for first-year graduate students.