Download Free Kinetics And Mechanisms In The Oxidation Of Metal Vapors Book in PDF and EPUB Free Download. You can read online Kinetics And Mechanisms In The Oxidation Of Metal Vapors and write the review.

This book presents experimental data and recent results of model calculations on the formation of natural oxide film on metal surfaces and of metal hydride formation. Such films are responsible for corrosion, friction, and wear of metallic materials. Describing mostly the authors own research, this monograph gives an overview of models suitable for metal-gas reactions and demonstrates how complex metal-gas interactions can be analyzed by standard procedures of chemical kinetics. The book, and the data and equations it contains, will be useful to researchers in surface science, condensed-matter physics, and materials science.
The book is concerned with understanding the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry and alloy composition. The focus is on designing (or selecting) alloy compositions which provide optimal resistance to attack by corrosive gases. . Emphasises quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities and alloy compositions. . Uses phase diagrams and diffusion paths to analyse and interpret scale structures and internal precipitation distributions . Provides a detailed examination of corrosion in industrial gases (water vapour effects, carburisation and metal dusting, sulphidation) . Text is well supported by numerous micrographs, phase diagrams and tabulations of relevant thermodynamic and kinetic data . Combines physical chemistry and materials science methodologies.
NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.
The book brings together, for the first time, all aspects of reactions of metallic species in the gas phase and gives an up-to-date overview of the field. Reactions covered include those of atomic, other free radical and transient neutral species, as well as ions. Experimental and theoretical work is reviewed and the efforts to establish a closer link between these approaches are discussed. The field is mainly approached from a fundamental point-of-view, but the applied problems which have helped stimulate the interest are pointed out and form the major subject of the final chapters. These emphasize the competition between purely gas-phase and gas-surface reactions.
Reviews the science and engineering of high-temperature corrosion and provides guidelines for selecting the best materials for an array of system processes High-temperature corrosion (HTC) is a widespread problem in an array of industries, including power generation, aerospace, automotive, and mineral and chemical processing, to name a few. This book provides engineers, physicists, and chemists with a balanced presentation of all relevant basic science and engineering aspects of high-temperature corrosion. It covers most HTC types, including oxidation, sulfidation, nitridation, molten salts, fuel-ash corrosion, H2S/H2 corrosion, molten fluoride/HF corrosion, and carburization. It also provides corrosion data essential for making the appropriate choices of candidate materials for high-temperature service in process conditions. A form of corrosion that does not require the presence of liquids, high-temperature corrosion occurs due to the interaction at high temperatures of gases, liquids, or solids with materials. HTC is a subject is of increasing importance in many areas of science and engineering, and students, researchers, and engineers need to be aware of the nature of the processes that occur in high-temperature materials and equipment in common use today, especially in the chemical, gas, petroleum, electric power, metal manufacturing, automotive, and nuclear industries. Provides engineers and scientists with the essential data needed to make the most informed decisions on materials selection Includes up-to-date information accompanied by more than 1,000 references, 80% of which from within the past fifteen years Includes details on systems of critical engineering importance, especially the corrosion induced by low-energy radionuclides Includes practical guidelines for testing and research in HTC, along with both the European and International Standards for high-temperature corrosion engineering Offering balanced, in-depth coverage of the fundamental science behind and engineering of HTC, High Temperature Corrosion: Fundamentals and Engineering is a valuable resource for academic researchers, students, and professionals in the material sciences, solid state physics, solid state chemistry, electrochemistry, metallurgy, and mechanical, chemical, and structural engineers.
The first of many important works featured in CRC Press’ Metals and Alloys Encyclopedia Collection, the Encyclopedia of Iron, Steel, and Their Alloys covers all the fundamental, theoretical, and application-related aspects of the metallurgical science, engineering, and technology of iron, steel, and their alloys. This Five-Volume Set addresses topics such as extractive metallurgy, powder metallurgy and processing, physical metallurgy, production engineering, corrosion engineering, thermal processing, metalworking, welding, iron- and steelmaking, heat treating, rolling, casting, hot and cold forming, surface finishing and coating, crystallography, metallography, computational metallurgy, metal-matrix composites, intermetallics, nano- and micro-structured metals and alloys, nano- and micro-alloying effects, special steels, and mining. A valuable reference for materials scientists and engineers, chemists, manufacturers, miners, researchers, and students, this must-have encyclopedia: Provides extensive coverage of properties and recommended practices Includes a wealth of helpful charts, nomograms, and figures Contains cross referencing for quick and easy search Each entry is written by a subject-matter expert and reviewed by an international panel of renowned researchers from academia, government, and industry. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]