Download Free Kinetic Theory Book in PDF and EPUB Free Download. You can read online Kinetic Theory and write the review.

This book can be described as a student's edition of the author's Dynamical Theory of Gases. It is written, however, with the needs of the student of physics and physical chemistry in mind, and those parts of which the interest was mainly mathematical have been discarded. This does not mean that the book contains no serious mathematical discussion; the discussion in particular of the distribution law is quite detailed; but in the main the mathematics is concerned with the discussion of particular phenomena rather than with the discussion of fundamentals.
A thorough examination of kinetic theory and its successes in understanding and describing irreversible phenomena in physical systems.
This book goes beyond the scope of other works in the field with its thorough treatment of applications in a wide variety of disciplines. The third edition features a new section on constants of motion and symmetry and a new appendix on the Lorentz-Legendre expansion.
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
This monograph and text was designed for first-year students of physical chemistry who require further details of kinetic theory. The treatment focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. Includes numerous exercises, many partially worked out, and end-of-chapter problems. 1966 edition.
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
This book introduces physics students and teachers to the historical development of the kinetic theory of gases, by providing a collection of the most important contributions by Clausius, Maxwell and Boltzmann, with introductory surveys explaining their significance. In addition, extracts from the works of Boyle, Newton, Mayer, Joule, Helmholtz, Kelvin and others show the historical context of ideas about gases, energy and irreversibility. In addition to five thematic essays connecting the classical kinetic theory with 20th century topics such as indeterminism and interatomic forces, there is an extensive international bibliography of historical commentaries on kinetic theory, thermodynamics, etc. published in the past four decades.The book will be useful to historians of science who need primary and secondary sources to be conveniently available for their own research and interpretation, along with the bibliography which makes it easier to learn what other historians have already done on this subject.
Many laboratory and astrophysical plasmas show deviations from local ther modynamic equilibrium (LTE). This monograph develops non-LTE plasma spectroscopy as a kinetic theory of particles and photons, considering the radiation field as a photon gas whose distribution function (the radiation in tensity) obeys a kinetic equation (the radiative transfer equation), just as the distribution functions of particles obey kinetic equations. Such a unified ap proach provides clear insight into the physics of non-LTE plasmas. Chapter 1 treats the principle of detailed balance, of central importance for understanding the non-LTE effects in plasmas. Chapters 2, 3 deal with kinetic equations of particles and photons, respectively, followed by a chapter on the fluid description of gases with radiative interactions. Chapter 5 is devoted to the H theorem, and closes the more general first part of the book. The last two chapters deal with more specific topics. After briefly discuss ing optically thin plasmas, Chap. 6 treats non-LTE line transfer by two-level atoms, the line profile coefficients of three-level atoms, and non-Maxwellian electron distribution functions. Chapter 7 discusses topics where momentum exchange between matter and radiation is crucial: the approach to thermal equilibrium through interaction with blackbody radiation, radiative forces, and Compton scattering. A number of appendices have been added to make the book self-contained and to treat more special questions. In particular, Appendix B contains an in troductory discussion of atomic line profile coefficients.
Imparts the similarities and differences between ratified and condensed matter, classical and quantum systems as well as real and ideal gases. Presents the quasi-thermodynamic theory of gas-liquid interface and its application for density profile calculation within the van der Waals theory of surface tension. Uses inductive logic to lead readers from observation and facts to personal interpretation and from specific conclusions to general ones.