Download Free Kinetic Models Of Catalytic Reactions Book in PDF and EPUB Free Download. You can read online Kinetic Models Of Catalytic Reactions and write the review.

Describes how to conduct kinetic experiments with heterogeneous catalysts, analyze and model the results, and characterize the catalysts Detailed analysis of mass transfer in liquid phase reactions involving porous catalysts. Important to the fine chemicals and pharmaceutical industries so it has appeal to many researchers in both industry and academia (chemical engineering and chemistry departments
Catalytic Kinetics: Chemistry and Engineering, Second Edition offers a unified view that homogeneous, heterogeneous, and enzymatic catalysis form the cornerstone of practical catalysis. The book has an integrated, cross-disciplinary approach to kinetics and transport phenomena in catalysis, but still recognizes the fundamental differences between different types of catalysis. In addition, the book focuses on a quantitative chemical understanding and links the mathematical approach to kinetics with chemistry. A diverse group of catalysts is covered, including catalysis by acids, organometallic complexes, solid inorganic materials, and enzymes, and this fully updated second edition contains a new chapter on the concepts of cascade catalysis. Finally, expanded content in this edition provides more in-depth discussion, including topics such as organocatalysis, enzymatic kinetics, nonlinear dynamics, solvent effects, nanokinetics, and kinetic isotope effects. - Fully revised and expanded, providing the latest developments in catalytic kinetics - Bridges the gaps that exist between hetero-, homo- and enzymatic-catalysis - Provides necessary tools and new concepts for researchers already working in the field of catalytic kinetics - Written by internationally-renowned experts in the field - Examples and exercises following each chapter make it suitable as an advanced course book
This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book has been written by a group of mathematicians and chemists whose common interest is in the complex dynamics of catalytic reactions. Based on developments in mathematical chemistry, a general theory is described that allows the investigation of the relationships between the kinetic characteristics of complex reactions and their detailed reaction mechanism. Furthermore, a comprehensive analysis is made of some typical mechanism of catalytic reactions, in particular for the oxidation of carbon monoxide on platinum metals. In fact, the book presents three kinetics: (a) detailed, oriented to the elucidation of a detailed reaction mechanism according to its kinetic laws; (b) applied, with the aim of obtaining kinetic relationships for the further design of chemical reactors; and (c) mathematical kinetics whose purpose is the analysis of mathematical models for heterogeneous catalytic reactions taking place under steady- or unsteady-state conditions.
Defines the emerging field of catalytic reaction synthesis in the search for new catalysts and catalytic processes. Illustrates how experimental data from diverse sources can be consolidated to form a quantitative description of the essential chemistry taking place on the catalyst surface. Elucidates the possible relationships between catalyst kinetic properties and surface chemical bonding properties. Offers examples of microkinetic analysis and catalytic reaction synthesis for a variety of catalytic reactions over metals, oxides, and zeolite catalysts. Illustrates the underlying strategy used to formulate a microkinetic model, calibrate the model to the existing experimental data, and assess the critical aspects of the essential surface chemistry involved in the catalytic process.
The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.
Reaction Kinetics and the Development and Operation of Catalytic Processes is a trendsetter. The Keynote Lectures have been authored by top scientists and cover a broad range of topics like fundamental aspects of surface chemistry, in particular dynamics and spillover, the modeling of reaction mechanisms, with special focus on the importance of transient experimentation and the application of kinetics in reactor design. Fundamental and applied kinetic studies are well represented. More than half of these deal with transient kinetics, a new trend made possible by recent sophisticated experimental equipment and the awareness that transient experimentation provides more information and insight into the microphenomena occurring on the catalyst surface than steady state techniques. The trend is not limited to purely kinetic studies since the great majority of the papers dealing with reactors also focus on transients and even deliberate transient operation. It is to be expected that this trend will continue and amplify as the community becomes more aware of the predictive potential of fundamental kinetics when combined with detailed realistic modeling of the reactor operation.
A practical approach to chemical reaction kinetics—from basic concepts to laboratory methods—featuring numerous real-world examples and case studies This book focuses on fundamental aspects of reaction kinetics with an emphasis on mathematical methods for analyzing experimental data and interpreting results. It describes basic concepts of reaction kinetics, parameters for measuring the progress of chemical reactions, variables that affect reaction rates, and ideal reactor performance. Mathematical methods for determining reaction kinetic parameters are described in detail with the help of real-world examples and fully-worked step-by-step solutions. Both analytical and numerical solutions are exemplified. The book begins with an introduction to the basic concepts of stoichiometry, thermodynamics, and chemical kinetics. This is followed by chapters featuring in-depth discussions of reaction kinetics; methods for studying irreversible reactions with one, two and three components; reversible reactions; and complex reactions. In the concluding chapters the author addresses reaction mechanisms, enzymatic reactions, data reconciliation, parameters, and examples of industrial reaction kinetics. Throughout the book industrial case studies are presented with step-by-step solutions, and further problems are provided at the end of each chapter. Takes a practical approach to chemical reaction kinetics basic concepts and methods Features numerous illustrative case studies based on the author’s extensive experience in the industry Provides essential information for chemical and process engineers, catalysis researchers, and professionals involved in developing kinetic models Functions as a student textbook on the basic principles of chemical kinetics for homogeneous catalysis Describes mathematical methods to determine reaction kinetic parameters with the help of industrial case studies, examples, and step-by-step solutions Chemical Reaction Kinetics is a valuable working resource for academic researchers, scientists, engineers, and catalyst manufacturers interested in kinetic modeling, parameter estimation, catalyst evaluation, process development, reactor modeling, and process simulation. It is also an ideal textbook for undergraduate and graduate-level courses in chemical kinetics, homogeneous catalysis, chemical reaction engineering, and petrochemical engineering, biotechnology.
Many processes of the chemical industry are based upon heterogeneous catalysis. Two important items of these processes are the development of the catalyst itself and the design and optimization of the reactor. Both aspects would benefit from rigorous and accurate kinetic modeling, based upon information on the working catalyst gained from classical steady state experimentation, but also from studies using surface science techniques, from quantum chemical calculations providing more insight into possible reaction pathways and from transient experimentation dealing with reactions and reactors. This information is seldom combined into a kinetic model and into a quantitative description of the process. Generally the catalytic aspects are dealt with by chemists and by physicists, while the chemical engineers are called upon for mechanical aspects of the reactor design and its control. The symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis" aims at illustrating a more global and concerted approach through a number of prestigious keynote lectures and severely screened oral and poster presentations.
The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Offering a systematic development of the chemical reaction engineering concept, this volume explores: Essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors Homogeneous and heterogeneous reactors Residence time distributions and non-ideal flow conditions in industrial reactors Solutions of algebraic and ordinary differential equation systems Gas- and liquid-phase diffusion coefficients and gas-film coefficients Correlations for gas-liquid systems Solubilities of gases in liquids Guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.