Download Free Kinetic And Product Studies Of The Hydroxyl Radical Initiated Oxidation Of Dimethyl Sulfide In The Temperature Range 250 300 K Book in PDF and EPUB Free Download. You can read online Kinetic And Product Studies Of The Hydroxyl Radical Initiated Oxidation Of Dimethyl Sulfide In The Temperature Range 250 300 K and write the review.

The relative rate technique has been used to examine the kinetics for the reaction of the hydroxyl radical (OH) with dimethyl succinate (DMS, CH3OC(=O)CH2CH2C(=O)OCH3). The measured rate constant for OH + DMS was 1.5 +/- 0.4 x 10(exp -12) cc/molecule/s at 297 +/- 3 deg K and 1 atmosphere total pressure. This is in agreement with the predicted value of 1.15 x 10(exp -12) cc/molecule/s determined by structure activity relationships. To more clearly define DMS's atmospheric degradation mechanism, the products of the OH + DMS reaction were also investigated. The only primary product detected was mono methyl succinate (MMS, CH3OC(=O)CH2CH2C(=O)OH)) at a yield of only 2.17 +/- 0.25%. Extensive efforts were used to identify other primary products but none were measured. Formic acid (HC(=O)OH); however, was observed as a secondary product being formed at a rate of (4.6 +/- 1.3) x 10(exp 14) molecules/second, 60 minutes after initiating the OH + DMS reaction. Formic acid is believed to be a degradation product of the primary product, methyl glyoxylate (MG, CH3OC(=O)C(=O)H). Product formation pathways are discussed in light of current understanding of the atmospheric chemistry of oxygenated organic compounds.
The tropospheric oxidation of unsaturated hydrocarbons is a central issue in atmospheric chemistry. These hydrocarbons are emitted into the atmosphere from both natural and anthropogenic sources, and their atmospheric oxidation leads to different atmospheric pollutants, including ground level ozone, photochemical smog and secondary organic aerosols. Isoprene and 1,3-butadiene represent a biogenic and an anthropogenic hydrocarbon, respectively, which primarily undergo electrophilic addition of OH radical, followed by chain propagating radical reactions. Their oxidation is the major source for ground level ozone formation in both rural and urban area and understanding their chemistry is essential for regional air quality modeling. Until recently, most of the studies of isoprene chemistry have been non-isomer specific, reflecting the reactivity of combined pathways and therefore were insensitive to specific details of the isomeric pathways. An isomeric selective approach to studying unsaturated hydrocarbon oxidation is described in this dissertation. A synthesized precursor, whose photolysis can provide a route to the formation of energy selected single isomer in the isoprene oxidation pathway, enables the study of important channels that are difficult to unravel in non isomer specific experiments. The major addition channel in OH isoprene oxidation has been studied following the isomeric selective approach and using Laser Photolysis-Laser Induced Fluorescence (LP-LIF) as the primary experimental technique. The study reveals important information about the oxidative chemistry of the [delta]-peroxy radicals, accounting for about 20% of missing carbon balance in isoprene oxidation, and isomeric specific rate constants. A similar approach was applied to study the oxidation of 1,3-butadiene, and the photolytic precursor for the dominant hydroxy alkyl isomer in the OH initiated oxidation of 1,3-butadiene was synthesized. The subsequent experiments and analysis revealed detailed information about the oxidative chemistry accounting for approximately 26% of the missing chemistry. Finally, non isomeric selective OH cycling experiments were carried out on the1,3-butadiene system. By analyzing the OH cycling data with the combined information obtained from the isomeric specific studies of the two isomeric channels of 1,3-butadiene oxidation, the relative branching between the two isomeric channels of OH-1,3-butadiene oxidation was determined.
Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada
The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.