Download Free Kazhdan Lusztig Theory And Related Topics Book in PDF and EPUB Free Download. You can read online Kazhdan Lusztig Theory And Related Topics and write the review.

This volume attests to the far-reaching influence of Kazhdan-Lusztig theory on several areas of mathematics by presenting a diverse set of research articles centered on this theme. Although there has been a great deal of work in Kazhdan-Lusztig theory, this book is perhaps the first to discuss all aspects of the theory and gives readers a flavor of the range of topics involved. The articles present recent work in Kazhdan-Lusztig theory, including representations of Kac-Moody Lie algebras, geometry of Schubert varieties, intersection cohomology of stratified spaces, and some new topics such as quantum groups.
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.
Based on invited lectures at the 1992 Canadian Algebra Seminar, this volume represents an up-to-date and unique report on finite-dimensional algebras as a subject with many serious interactions with other mathematical disciplines, including algebraic groups and Lie theory, automorphic forms, sheaf theory, finite groups, and homological algebra. It will interest mathematicians and graduate students in these and related subjects as an introduction to research in an area of increasing relevance and importance.
This volume contains the proceedings of a conference on abelian groups held in August 1993 at Oberwolfach. The conference brought together forty-seven participants from all over the world and from a range of mathematical areas. Experts from model theory, set theory, noncommutative groups, module theory, and computer science discussed problems in their fields that relate to abelian group theory. This book provides a window on the frontier of this active area of research.
Discusses the problem of determining the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic $p>7$. This book includes topics such as Lie algebras of prime characteristic, algebraic groups, combinatorics and representation theory, and Kac-Moody and Virasoro algebras.
Twelve-year-old Molly and her ten-year-old brother, Michael, have never liked their younger stepsister, Heather. Ever since their parents got married, she's made Molly and Michael's life miserable. Now their parents have moved them all to the country to live in a house that used to be a church, with a cemetery in the backyard. If that's not bad enough, Heather starts talking to a ghost named Helen and warning Molly and Michael that Helen is coming for them. Molly feels certain Heather is in some kind of danger, but every time she tries to help, Heather twists things around to get her into trouble. It seems as if things can't get any worse. But they do -- when Helen comes. "Genuinely scary, complete with dark secrets from the past, unsettled graves, and a very real ghost." -- The Bulletin of the Center for Children's Books "An unusually scary, well-crafted ghost fantasy." -- Kirkus Reviews
"The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak{gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature."--Publisher's website.
Now more that a quarter of a century old, intersection homology theory has proven to be a powerful tool in the study of the topology of singular spaces, with deep links to many other areas of mathematics, including combinatorics, differential equations, group representations, and number theory. Like its predecessor, An Introduction to Intersection Homology Theory, Second Edition introduces the power and beauty of intersection homology, explaining the main ideas and omitting, or merely sketching, the difficult proofs. It treats both the basics of the subject and a wide range of applications, providing lucid overviews of highly technical areas that make the subject accessible and prepare readers for more advanced work in the area. This second edition contains entirely new chapters introducing the theory of Witt spaces, perverse sheaves, and the combinatorial intersection cohomology of fans. Intersection homology is a large and growing subject that touches on many aspects of topology, geometry, and algebra. With its clear explanations of the main ideas, this book builds the confidence needed to tackle more specialist, technical texts and provides a framework within which to place them.
Kac-Moody Lie algebras 9 were introduced in the mid-1960s independently by V. Kac and R. Moody, generalizing the finite-dimensional semisimple Lie alge bras which we refer to as the finite case. The theory has undergone tremendous developments in various directions and connections with diverse areas abound, including mathematical physics, so much so that this theory has become a stan dard tool in mathematics. A detailed treatment of the Lie algebra aspect of the theory can be found in V. Kac's book [Kac-90l This self-contained work treats the algebro-geometric and the topological aspects of Kac-Moody theory from scratch. The emphasis is on the study of the Kac-Moody groups 9 and their flag varieties XY, including their detailed construction, and their applications to the representation theory of g. In the finite case, 9 is nothing but a semisimple Y simply-connected algebraic group and X is the flag variety 9 /Py for a parabolic subgroup p y C g.