Download Free Just In Time Object Recognition Using Range Sensors Book in PDF and EPUB Free Download. You can read online Just In Time Object Recognition Using Range Sensors and write the review.

Automatie object recognition is a multidisciplinary research area using con cepts and tools from mathematics, computing, optics, psychology, pattern recognition, artificial intelligence and various other disciplines. The purpose of this research is to provide a set of coherent paradigms and algorithms for the purpose of designing systems that will ultimately emulate the functions performed by the Human Visual System (HVS). Hence, such systems should have the ability to recognise objects in two or three dimensions independently of their positions, orientations or scales in the image. The HVS is employed for tens of thousands of recognition events each day, ranging from navigation (through the recognition of landmarks or signs), right through to communication (through the recognition of characters or people themselves). Hence, the motivations behind the construction of recognition systems, which have the ability to function in the real world, is unquestionable and would serve industrial (e.g. quality control), military (e.g. automatie target recognition) and community needs (e.g. aiding the visually impaired). Scope, Content and Organisation of this Book This book provides a comprehensive, yet readable foundation to the field of object recognition from which research may be initiated or guided. It repre sents the culmination of research topics that I have either covered personally or in conjunction with my PhD students. These areas include image acqui sition, 3-D object reconstruction, object modelling, and the matching of ob jects, all of which are essential in the construction of an object recognition system.
In the area of Digital Image Processing the new area of "Time-Varying Image Processing and Moving Oject Recognition" is contributing to impressive advances in several fields. Presented in this volume are new digital image processing and recognition methods, implementation techniques and advanced applications such as television, remote sensing, biomedicine, traffic, inspection, and robotics. New approaches (such as digital transforms, neural networks) for solving 2-D and 3-D problems are described. Many papers concentrate on motion estimation and recognition i.e. tracking of moving objects. Overall, the book describes the state-of-the-art (theory, implementation, applications) of this developing area, together with future trends. The work will be of interest not only to researchers, professors and students in university departments of engineering, communications, computers and automatic control, but also to engineers and managers of industries concerned with computer vision, manufacturing, automation, robotics and quality control.
This work presents a solution for autonomous vehicles to detect arbitrary moving traffic participants and to precisely determine the motion of the vehicle. The solution is based on three-dimensional images captured with modern range sensors like e.g. high-resolution laser scanners. As result, objects are tracked and a detailed 3D model is built for each object and for the static environment. The performance is demonstrated in challenging urban environments that contain many different objects.
The State Of The Art Of Sensor Networks Written by an international team of recognized experts in sensor networks from prestigious organizations such as Motorola, Fujitsu, the Massachusetts Institute of Technology, Cornell University, and the University of Illinois, Handbook of Sensor Networks: Algorithms and Architectures tackles important challenges and presents the latest trends and innovations in this growing field. Striking a balance between theoretical and practical coverage, this comprehensive reference explores a myriad of possible architectures for future commercial, social, and educational applications, and offers insightful information and analyses of critical issues, including: * Sensor training and security * Embedded operating systems * Signal processing and medium access * Target location, tracking, and sensor localization * Broadcasting, routing, and sensor area coverage * Topology construction and maintenance * Data-centric protocols and data gathering * Time synchronization and calibration * Energy scavenging and power sources With exercises throughout, students, researchers, and professionals in computer science, electrical engineering, and telecommunications will find this an essential read to bring themselves up to date on the key challenges affecting the sensors industry.
This book contains papers presented at the NATO Advanced Research Workshop on "Real-time Object and Environment Measurement and Classification" held in Hotel Villa del Mare, Maratea, Italy, August 31 - September 3, 1987. This workshop was organized under the NATO Special Programme on Sensory Systems for Robotic Control. Professor Eric Backer, Delft University of Technology, The Netherlands and Professor Erdal Panayirci, Technical University of Istanbul, Turkey were the members of the organizing committee for this workshop. There were four major themes of this workshop: Real-time Requirements, Feature Measurement, Object Representation and Recognition, and Architecture for Measurement and Classification. A total of twenty-five technical presentations were made. These talks covered a wide spectrum of topics including hardware implementation of specific vision algorithms, a complete vision system for object tracking and inspection, using three cameras (trinocular stereo) for feature measurement, neural network for object recognition, integration of CAD (Computer-Aided Design) and vision systems, and the use of pyramid architectures for solving varioos computer vision problems.
OBJECT DETECTION BY STEREO VISION IMAGES Since both theoretical and practical aspects of the developments in this field of research are explored, including recent state-of-the-art technologies and research opportunities in the area of object detection, this book will act as a good reference for practitioners, students, and researchers. Current state-of-the-art technologies have opened up new opportunities in research in the areas of object detection and recognition of digital images and videos, robotics, neural networks, machine learning, stereo vision matching algorithms, soft computing, customer prediction, social media analysis, recommendation systems, and stereo vision. This book has been designed to provide directions for those interested in researching and developing intelligent applications to detect an object and estimate depth. In addition to focusing on the performance of the system using high-performance computing techniques, a technical overview of certain tools, languages, libraries, frameworks, and APIs for developing applications is also given. More specifically, detection using stereo vision images/video from its developmental stage up till today, its possible applications, and general research problems relating to it are covered. Also presented are techniques and algorithms that satisfy the peculiar needs of stereo vision images along with emerging research opportunities through analysis of modern techniques being applied to intelligent systems. Audience Researchers in information technology looking at robotics, deep learning, machine learning, big data analytics, neural networks, pattern & data mining, and image and object recognition. Industrial sectors include automotive electronics, security and surveillance systems, and online retailers.
Declarative query interfaces to Sensor Networks (SN) have become a commodity. These interfaces allow access to SN deployed for collecting data using relational queries. However, SN are not confined to data collection, but may track object movement, e.g., wildlife observation or traffic monitoring. While rational approaches are well suited for data collection, research on Moving Object Databases (MOD) has shown that relational operators are unsuitable to express information needs on object movement, i.e., spatio-temporal queries. Querying Moving Objects Detected by Sensor Networks studies declarative access to SN that track moving objects. The properties of SN present a straightforward application of MOD, e.g., node failures, limited detection ranges and accuracy which vary over time etc. Furthermore, point sets used to model MOD-entities like regions assume the availability of very accurate knowledge regarding the spatial extend of these entities, assuming such knowledge is unrealistic for most SN. This book is the first that defines a complete set of spatio-temporal operators for SN while taking into account their properties. Based on these operators, we systematically investigate how to derive query results from object detections by SN. Finally, process spatio-temporal queries are shown in SN efficiently, i.e., reducing the communication between nodes. The evaluation shows that the measures reduce communication by 45%-89%.
A representation of objects by their parts is the dominant strategy for representing complex 3D objects in many disciplines. In computer vision and robotics, superquadrics are among the most widespread part models. Superquadrics are a family of parametric models that cover a wide variety of smoothly changing 3D symmetric shapes, which are controlled with a small number of parameters and which can be augmented with the addition of global and local deformations. The book covers, in depth, the geometric properties of superquadrics. The main contribution of the book is an original approach to the recovery and segmentation of superquadrics from range images. Several applications of superquadrics in computer vision and robotics are thoroughly discussed and, in particular, the use of superquadrics for range image registration is demonstrated. Audience: The book is intended for readers of all levels who are familiar with and interested in computer vision issues.
This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production.
These proceedings of the World Congress 2006, the fourteenth conference in this series, offer a strong scientific program covering a wide range of issues and challenges which are currently present in Medical physics and Biomedical Engineering. About 2,500 peer reviewed contributions are presented in a six volume book, comprising 25 tracks, joint conferences and symposia, and including invited contributions from well known researchers in this field.