Download Free Journal Of Basic Engineering Book in PDF and EPUB Free Download. You can read online Journal Of Basic Engineering and write the review.

The volume includes a set of selected papers extended and revised from the 2011 International Conference on Mechanical Engineering and Technology, held on London, UK, November 24-25, 2011. Mechanical engineering technology is the application of physical principles and current technological developments to the creation of useful machinery and operation design. Technologies such as solid models may be used as the basis for finite element analysis (FEA) and / or computational fluid dynamics (CFD) of the design. Through the application of computer-aided manufacturing (CAM), the models may also be used directly by software to create "instructions" for the manufacture of objects represented by the models, through computer numerically controlled (CNC) machining or other automated processes, without the need for intermediate drawings. This volume covers the subject areas of mechanical engineering and technology, and also covers interdisciplinary subject areas of computers, communications, control and automation. We hope that researchers, graduate students and other interested readers benefit scientifically from the book and also find it stimulating in the process.
Pipe Flow Provides detailed coverage of hydraulic analysis of piping systems, revised and updated throughout Pipe Flow: A Practical and Comprehensive Guide provides the information required to design and analyze piping systems for distribution systems, power plants, and other industrial operations. Divided into three parts, this authoritative resource describes the methodology for solving pipe flow problems, presents loss coefficient data for a wide range of piping components, and examines pressure drop, cavitation, flow-induced vibration, and other flow phenomena that affect the performance of piping systems. Throughout the book, sample problems and worked solutions illustrate the application of core concepts and techniques. The second edition features revised and expanded information throughout, including an entirely new chapter that presents a mixing section flow model for accurately predicting jet pump performance. This edition includes additional examples, supplemental problems, and a new appendix of the speed of sound in water. With clear explanations, expert guidance, and precise hydraulic computations, this classic reference text remains required reading for anyone working to increase the quality and efficiency of modern piping systems. Discusses the fundamental physical properties of fluids and the nature of fluid flow Demonstrates the accurate prediction and management of pressure loss for a variety of piping components and piping systems Reviews theoretical research on fluid flow in piping and its components Presents important loss coefficient data with straightforward tables, diagrams, and equations Includes full references, further reading sections, and numerous example problems with solution Pipe Flow: A Practical and Comprehensive Guide, Second Edition is an excellent textbook for engineering students, and an invaluable reference for professional engineers engaged in the design, operation, and troubleshooting of piping systems.
Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.
A logical, integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics in an easy-to-understand style. Emphasis is placed on presenting fundamental behaviour before more advanced topics are introduced. The use of S.I. units throughout, and frequent references to current international codes of practice and refereed research papers, make the contents universally applicable. Written with the university student in mind and packed full of pedagogical features, this book provides an integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics. It includes: worked examples to elucidate the technical content and facilitate self-learning a convenient structure (the book is divided into sections), enabling it to be used throughout second, third and fourth year undergraduate courses universally applicable contents through the use of SI units throughout, frequent references to current international codes of practice and refereed research papers new and advanced topics that extend beyond those in standard undergraduate courses. The perfect textbook for a range of courses on soils mechanics and also a very valuable resource for practising professional engineers.
Explains the mechanisms governing flow-induced vibrations and helps engineers prevent fatigue and fretting-wear damage at the design stage Fatigue or fretting-wear damage in process and plant equipment caused by flow-induced vibration can lead to operational disruptions, lost production, and expensive repairs. Mechanical engineers can help prevent or mitigate these problems during the design phase of high capital cost plants such as nuclear power stations and petroleum refineries by performing thorough flow-induced vibration analysis. Accordingly, it is critical for mechanical engineers to have a firm understanding of the dynamic parameters and the vibration excitation mechanisms that govern flow-induced vibration. Flow-Induced Vibration Handbook for Nuclear and Process Equipment provides the knowledge required to prevent failures due to flow-induced vibration at the design stage. The product of more than 40 years of research and development at the Canadian Nuclear Laboratories, this authoritative reference covers all relevant aspects of flow-induced vibration technology, including vibration failures, flow velocity analysis, vibration excitation mechanisms, fluidelastic instability, periodic wake shedding, acoustic resonance, random turbulence, damping mechanisms, and fretting-wear predictions. Each in-depth chapter contains the latest available lab data, a parametric analysis, design guidelines, sample calculations, and a brief review of modelling and theoretical considerations. Written by a group of leading experts in the field, this comprehensive single-volume resource: Helps readers understand and apply techniques for preventing fatigue and fretting-wear damage due to flow-induced vibration at the design stage Covers components including nuclear reactor internals, nuclear fuels, piping systems, and various types of heat exchangers Features examples of vibration-related failures caused by fatigue or fretting-wear in nuclear and process equipment Includes a detailed overview of state-of-the-art flow-induced vibration technology with an emphasis on two-phase flow-induced vibration Covering all relevant aspects of flow-induced vibration technology, Flow-Induced Vibration Handbook for Nuclear and Process Equipment is required reading for professional mechanical engineers and researchers working in the nuclear, petrochemical, aerospace, and process industries, as well as graduate students in mechanical engineering courses on flow-induced vibration.