Download Free Jordan Algebras Book in PDF and EPUB Free Download. You can read online Jordan Algebras and write the review.

The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.
From the reviews: "This book presents an important and novel approach to Jordan algebras. [...] Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." American Scientist
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.
The theory of Jordan algebras has played important roles behind the scenes of several areas of mathematics. Jacobson's book has long been the definitive treatment of the subject. It covers foundational material, structure theory, and representation theory for Jordan algebras. Of course, there are immediate connections with Lie algebras, which Jacobson details in Chapter 8. Of particular continuing interest is the discussion of exceptional Jordan algebras, which serve to explain the exceptional Lie algebras and Lie groups. Jordan algebras originally arose in the attempts by Jordan, von Neumann, and Wigner to formulate the foundations of quantum mechanics. They are still useful and important in modern mathematical physics, as well as in Lie theory, geometry, and certain areas of analysis.
Explores applications of Jordan theory to the theory of Lie algebras. After presenting the general theory of nonassociative algebras and of Lie algebras, the book then explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself.
Jordan algebras have found interesting applications in seemingly unrelated areas of mathematics such as operator theory, the foundations of quantum mechanics, complex analysis in finite and infinite dimensions, and harmonic analysis on homogeneous spaces. This book describes some relevant results and puts them in a general framework.
This monograph brings together my work in mathematical statistics as I have viewed it through the lens of Jordan algebras. Three technical domains are to be seen: applications to random quadratic forms (sums of squares), the investigation of algebraic simplifications of maxi mum likelihood estimation of patterned covariance matrices, and a more wide open mathematical exploration of the algebraic arena from which I have drawn the results used in the statistical problems just mentioned. Chapters 1, 2, and 4 present the statistical outcomes I have developed using the algebraic results that appear, for the most part, in Chapter 3. As a less daunting, yet quite efficient, point of entry into this material, one avoiding most of the abstract algebraic issues, the reader may use the first half of Chapter 4. Here I present a streamlined, but still fully rigorous, definition of a Jordan algebra (as it is used in that chapter) and its essential properties. These facts are then immediately applied to simplifying the M:-step of the EM algorithm for multivariate normal covariance matrix estimation, in the presence of linear constraints, and data missing completely at random. The results presented essentially resolve a practical statistical quest begun by Rubin and Szatrowski [1982], and continued, sometimes implicitly, by many others. After this, one could then return to Chapters 1 and 2 to see how I have attempted to generalize the work of Cochran, Rao, Mitra, and others, on important and useful properties of sums of squares.
From the reviews: "This book presents an important and novel approach to Jordan algebras. [...] Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." American Scientist
This volume contains a re-edition of Max Koecher's famous Minnesota Notes. The main objects are homogeneous, but not necessarily convex, cones. They are described in terms of Jordan algebras. The central point is a correspondence between semisimple real Jordan algebras and so-called omega-domains. This leads to a construction of half-spaces which give an essential part of all bounded symmetric domains. The theory is presented in a concise manner, with only elementary prerequisites. The editors have added notes on each chapter containing an account of the relevant developments of the theory since these notes were first written.
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.