Download Free Joint Analysis Of Three Flavour Neutrino Oscillations Combining The Ve Appearance And Vmu Disappearance Channels In The T2k Experiment Book in PDF and EPUB Free Download. You can read online Joint Analysis Of Three Flavour Neutrino Oscillations Combining The Ve Appearance And Vmu Disappearance Channels In The T2k Experiment and write the review.

This book is based on the author's work in the T2K long-baseline neutrino oscillation experiment, in which neutrinos are generated by a proton beam and are detected by near and far neutrino detectors. In order to achieve the precise measurement of the neutrino oscillation, an accurate understanding of the neutrino beam and the neutrino interaction is essential. Thus, the author measured the neutrino beam properties and the neutrino interaction cross sections using a near neutrino detector called INGRID and promoted a better understanding of them. Then, the author performed a neutrino oscillation analysis using the neutrino beam and neutrino interaction models verified by the INGRID measurements. As a result, some values of the neutrino CP phase are disfavored at the 90% confidence level. If the measurement precision is further improved, we may be able to discover the finite CP phase which involves the CP violation. Thus, this result is an important step towards the discovery of CP violation in the lepton sector, which may be the key to understanding the origin of the matter–antimatter asymmetry in the universe.
This thesis reports the calculation of neutrino production for the T2K experiment; the most precise a priori estimate of neutrino production that has been achieved for any accelerator-based neutrino oscillation experiment to date. The production of intense neutrino beams at accelerator facilities requires exceptional understanding of chains of particle interactions initiated within extended targets. In this thesis, the calculation of neutrino production for T2K has been improved by using measurements of particle production from a T2K replica target, taken by the NA61/SHINE experiment. This enabled the reduction of the neutrino production uncertainty to the level of 5%, which will have a significant impact on neutrino oscillation and interaction measurements by T2K in the coming years. In addition to presenting the revised flux calculation methodology in an accessible format, this thesis also reports a joint T2K measurement of muon neutrino and antineutrino disappearance, and the accompanying electron neutrino and antineutrino appearance, with the updated beam constraint.
This thesis reports the measurement of muon neutrino and antineutrino disappearance and electron neutrino and antineutrino appearance in a muon neutrino and antineutrino beam using the T2K experiment. It describes a result in neutrino physics that is a pioneering indication of charge-parity (CP) violation in neutrino oscillation; the first to be obtained from a single experiment. Neutrinos are some of the most abundant—but elusive—particles in the universe, and may provide a promising place to look for a potential solution to the puzzle of matter/antimatter imbalance in the observable universe. It has been firmly established that neutrinos can change flavour (or ‘oscillate’), as recognised by the 2015 Nobel Prize. The theory of neutrino oscillation allows for neutrinos and antineutrinos to oscillate differently (CP violation), and may provide insights into why our universe is matter-dominated. Bayesian statistical methods, including the Markov Chain Monte Carlo fitting technique, are used to simultaneously optimise several hundred systematic parameters describing detector, beam, and neutrino interaction uncertainties as well as the six oscillation parameters.
Contents:Solar Neutrinos:The Latest Solar Neutrino Results in Super-Kamiokande (Y Koshio)Weak Current in Deuterium (T Sato)Solar Neutrino Phenomenology and Future:Solar Neutrino Oscillations (M C Gonzalez-Garcia)The Status of Resonant Spin Flavor Precession (C S Lim)Atmospheric Neutrinos:Status of the Atmospheric Neutrino Studies (M D Messier)Cosmic Ray Measurements for Atmospheric Neutrino with BESS-TeV (K Abe)Oscillation Phenomenology I:Calculations of the Atmospheric ν Fluxes (P Lipari)Three-Flavor Analysis of Atmospheric and Solar Neutrinos (A Marrone)Absolute Neutrino Mass:Neutrinoless Double Beta Decay and Neutrino Oscillations (H V Klapdor-Kleingrothaus)Accelerator Neutrinos, CPV:The MINOS Experiment (M D Messier)The JHF-Kamioka Neutrino Project (T Kajita)Models and GUTs:Proton Decay in the Semi-Simple Unification Model (T Watari)Leptogenesis via LHu Flat Direction (M Fujii)Lepton Flavor Violation:Probing Physics Beyond the Standard Model from Lepton Sector (J Hisano)Oscillation Phenomenology II:Four Puzzles of Neutrino Mixing (S M Barr)Supernova Neutrinos:Supernova Neutrinos (J F Beacom)and other papers Readership: Researchers in high energy physics. Keywords:Solar Neutrinos;Atmospheric Neutrinos;Oscillation Phenomenology;Neutrino Mass;Accelerator Neutrinos;CP Violation;GUTs;Lepton Flavor Violation;Supernova Neutrinos
Takaaki Kajita and Arthur McDonald have been jointly awarded the 2015 Nobel Prize in Physics "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita is a Japanese physicist who is well known for neutrino experiments at the Kamiokande and the even more outsized Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into the rise of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the three families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible footprint in the history of big and better science. Copyright of the cover image belongs to Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo.
This book reviews the status of a very exciting field OCo neutrino oscillations OCo at a very important time. The fact that neutrinos have mass has only been proved in the last few years and the acceptance of that fact has opened up a whole new area of study to understand the fundamental parameters of the mixing matrix. The book summarizes the results from all the experiments which have played a role in the measurement of neutrino oscillations and briefly describes the scope of some new planned experiments. Contributions include a theoretical introduction by Stephen Parke from FNAL, as well as articles from all the major experimental groups who have been pivotal in uncovering the nature of the neutrino mass. Sample Chapter(s). Chapter 1: Neutrino Oscillation Phenomenology (677 KB). Contents: Neutrino Oscillation Phenomenology (S J Parke); The Super-Kamiokande Experiment (C W Walter); Sudbury Neutrino Observatory (S J M Peeters & J R Wilson); Neutrino Oscillation Physics with KamLAND: Reactor Antineutrinos and Beyond (K M Heeger); K2K: KEK to Kamioka Long-Baseline Neutrino Oscillation Experiment (R J Wilkes); MINOS (P Vahle); The LSND and KARMEN Neutrino Oscillation Experiments (W C Louis); MiniBooNE (S J Brice); The OPERA Experiment in the CNGS Beam (D Autiero et al.); The T2K Experiment (D L Wark); The NO?A Experiment (G J Feldman); Double Chooz (G A Horton-Smith & T Lasserre); Daya Bay: A Sensitive Determination of ? 13 with Reactor Antineutrinos (K B Luk & Y Wang). Readership: Physicists, researchers and graduate students in high energy/nuclear and particle physics."
In this thesis the author contributes to the analysis of neutrino beam data collected between 2010 and 2013 to identify νμ→νe events at the Super-Kamiokande detector. In particular, the author improves the pion–nucleus interaction uncertainty, which is one of the dominant systematic error sources in T2K neutrino oscillation measurement. In the thesis, the measurement of νμ→νe oscillation in the T2K (Tokai to Kamioka) experiment is presented and a new constraint on δCP is obtained. This measurement and the analysis establish, at greater than 5σ significance, the observation of νμ→νe oscillation for the first time in the world. Combining the T2K νμ→νe oscillation measurement with the latest findings on oscillation parameters including the world average value of θ13 from reactor experiments, the constraint on the value of δCP at the 90% confidence level is obtained. This constraint on δCP is an important step towards the discovery of CP violation in the lepton sector.
This thesis highlights data from MINOS, a long-baseline accelerator neutrino experiment, and details one of the most sensitive searches for the sterile neutrino ever made. Further, it presents a new analysis paradigm to enable this measurement and a comprehensive study of the myriad systematic uncertainties involved in a search for a few-percent effect, while also rigorously investigating the statistical interpretation of the findings in the context of a sterile neutrino model. Among the scientific community, this analysis was quickly recognized as a foundational measurement in light of which all previous evidence for the sterile neutrino must now be (re)interpreted. The existence of sterile neutrinos has long been one of the key questions in the field. Not only are they a central component in many theories of new physics, but a number of past experiments have yielded results consistent with their existence. Nonetheless, they remain controversial: the interpretation of the data showing evidence for these sterile neutrinos is hotly debated.