Download Free Jets In Hadron Colliders At Order Alphasub S3 Book in PDF and EPUB Free Download. You can read online Jets In Hadron Colliders At Order Alphasub S3 and write the review.

Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
I Opening Review on Hadron-Collider Physics.- Hadron Colliders, the Standard Model, and Beyond.- 1 What is the Standard Model?.- 2 Hadron Colliders and the Standard Model.- 2.1 Precision electroweak.- 2.2 CKM.- 2.3 Top quark.- 2.4 Higgs boson.- 2.5 QCD.- 3 Beyond the Standard Model.- 3.1 Direct evidence.- 3.2 Indirect evidence.- References.- II Status of the Accelerators and Detectors.- Tevatron Collider Run II Status.- 1 Introduction.- 2 Overview.- 3 Run II Milestones.- 4 Parameters.- 5 Performance to Date.- 6 Accomplishments.- 6.1 Accomplishments: Helix Adjustments.- 6.2 Accomplishments: Antiproton Emittance.- 6.3 Accomplishments: Tevatron Injection Closure.- 7 Outstanding Issues.- 8 Future Prospects.- 9 Reliability.- 10 Summary.- 11 Acknowledgements.- Status of CDF II and Prospects for Run II.- 1 Introduction.- 2 The CDF II Detector and Trigger Upgrades.- 3 Physics Results and Prospects.- 4 Conclusions.- References.- Status of the D Detector.- 1 Introduction.- 2 Overview.- 3 Silicon Vertex Detector.- 4 Central Fiber Tracker.- 5 Calorimeters.- 6 Muon Detectors.- 7 Forward Proton Detectors.- 8 Trigger and Data Acquisition.- 9 Conclusions.- References.- III Standard Model Processes: Parton Luminosities, QCD Evolution.- The Proton Structure as Measured at HERA.- 1 Introduction.- 2 NC Cross Sections in the Complete Kinematic Plane.- 3 High-Q2 Measurements.- 4 Charged Current Measurements.- 5 Summary and Outlook.- References.- Global Fits of Parton Distributions.- 1 Introduction.- 2 Parton Uncertainties.- 2.1 Hessian (Error Matrix) approach.- 2.2 Offset method.- 2.3 Statistical approach.- 2.4 Lagrange multiplier method.- 2.5 Results.- 3 Theoretical Errors.- 3.1 Problems in the fit.- 3.2 Types of Theoretical Error, NNLO.- 3.3 Empirical approach.- 4 Conclusions.- References.- Low x Physics at HERA.- 1 Introduction.- 2 Formalism and Theory.- 3 Results.- 3.1 Inclusive measurements.- 3.2 Exclusive results.- 4 Summary.- References.- Saturation Effects in Hadronic Cross Sections.- 1 Introduction.- 2 The Loop-Loop Correlation Model.- 3 Saturation in Proton-Proton Scattering.- 4 Gluon Saturation.- 5 Conclusion.- References.- IV Standard Model Processes: QCD at High pt.- Progress in NNLO Calculations for Scattering Processes.- 1 Why NNLO Calculations are Important.- 1.1 Renormalisation scale uncertainty.- 1.2 Factorisation scale dependence.- 1.3 Jet algorithms.- 1.4 Transverse momentum of the incoming partons.- 1.5 Power corrections.- 1.6 The shape of the prediction.- 1.7 Parton densities at NNLO.- 2 Recent Progress in the Field.- 3 What Remains to be Done.- References.- Heavy Flavour Production at D .- 1 Introduction.- 2 b-production Cross-section.- 2.1 Muon and Jet Cross-section.- 2.2 b-tagging.- 3 J/? Cross-section.- 4 Other Measurements.- References.- Heavy Quark Production at CDF.- 1 Introduction.- 2 Beauty Production at CDF.- 2.1 CDF Run I results.- 2.2 Preliminary results from CDF Run II.- 3 Quarkonia Production at CDF.- 4 Charm Production at CDF.- 4.1 Run I results.- 4.2 Run II charm production cross-sections.- 5 Conclusion.- References.- Heavy Quark Production at HERA.- 1 Introduction.- 2 Open Charm Production.- 3 Charmonium.- 4 Beauty Production.- 5 Summary.- References.- Theoretical Developments on Hard QCD Processes at Colliders.- 1 Introduction.- 2 Heavy Quarks.- 2.1 Total Cross Sections.- 2.2 Transverse Momentum Distributions.- 2.3 Top Quark Spin Correlations.- 3 Jets.- 3.1 Jet Definitions.- 3.2 Precision Jet Physics.- 3.3 Multiparton Processes.- 4 Photons and Massive Gauge Bosons.- 4.1 Isolated Photons.- 4.2 Photon Pairs.- 4.3 Vector Boson and Higgs Production.- 4.4 Transverse Momentum Distributions.- 5 Conclusions and Outlook.- References.- Jet Production at CDF.- 1 Introduction.- 2 Inclusive Jet Production.- 3 Three-jet Production.- 4 Study of Jet Shapes in Run 2.- 5 Study of the Underlying Event.- 6 Study of W+Njet Production.- References.- Jet Algorithms at D .- 1 Introduction.- 2 The Measurement of Jets.- 3 Run I Co