Download Free Jannaf Combustion Subcommittee Meeting 29 Book in PDF and EPUB Free Download. You can read online Jannaf Combustion Subcommittee Meeting 29 and write the review.

A hands-on, integrated approach to solving combustion problems in diverse areas An understanding of turbulence, combustion, and multiphase reacting flows is essential for engineers and scientists in many industries, including power genera-tion, jet and rocket propulsion, pollution control, fire prevention and safety, and material processing. This book offers a highly practical discussion of burning behavior and chemical processes occurring in diverse materials, arming readers with the tools they need to solve the most complex combustion problems facing the scientific community today. The second of a two-volume work, Applications of Turbulent and Multiphase Combustion expands on topics involving laminar flames from Professor Kuo's bestselling book Principles of Combustion, Second Edition, then builds upon the theory discussed in the companion volume Fundamentals of Turbulent and Multiphase Combustion to address in detail cutting-edge experimental techniques and applications not covered anywhere else. Special features of this book include: Coverage of advanced applications such as solid propellants, burning behavior, and chemical boundary layer flows A multiphase systems approach discussing basic concepts before moving to higher-level applications A large number of practical examples gleaned from the authors' experience along with problems and a solutions manual Engineers and researchers in chemical and mechanical engineering and materials science will find Applications of Turbulent and Multiphase Combustion an indispensable guide for upgrading their skills and keeping up with this rapidly evolving area. It is also an excellent resource for students and professionals in mechanical, chemical, and aerospace engineering.
This volume provides a one-stop resource, compiling current research on the behavior and reliability of ceramic macro and micro scale systems. It is a collection of papers from The American Ceramic Society s 32nd International Conference on Advanced Ceramics and Composites, January 27-February 1, 2008. Topics include Design and Testing Challenges for Ceramic Joints; Structural Design, Testing and Life Prediction of Monolithic and Composite Components; Mechanical Behavior, Design, and Reliability of Small Scale Systems; Environmental Effects on Mechanical Properties; and more. This is a valuable reference for researchers in ceramics engineering.
Energetic materials are distinguished from other materials primarily by the fact that rapid, exothermic reactions can be induced with the release of gaseous products. This complex phenomenon cuts across many boundaries of chemistry (synthesis, kinetics, thermodynamics, spectroscopy, quantum and molecular dynamics calculations, etc.) and engineering physics (shock and detonation waves, hydrodynamics, fracture and solid mechanics, defects, etc.). This volume offers the latest chemistry advancements in understanding the complex dynamic processes in these materials in the condensed phase. The focus is on fundamental research into the rates and pathways of rapid exothermic reactions, product specification, diagnostic methods, molecular processes of energy transfer, and molecular processes at extreme pressure and temperature. Many novel materials are discussed.
Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications - from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. - New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion - all interrelated and discussed by considering scaling issues (e.g., length and time scales) - New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms - Expanded coverage of turbulent reactive flows to better illustrate real-world applications - Important new sections on stabilization of diffusion flames. For the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization
Progress in Astronautics and Aeronautics.
Annotation Since the invention of the V-2 rocket during World War II, combustion instabilities have been recognized as one of the most difficult problems in the development of liquid propellant rocket engines. This book is the first published in the United States on the subject since NASA's Liquid Rocket Combustion Instability (NASA SP-194) in 1972. In this book, experts cover four major subject areas: engine phenomenology and case studies, fundamental mechanisms of combustion instability, combustion instability analysis, and engine and component testing. Especially noteworthy is the inclusion of technical information from Russia and China--a first.
This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on explosives and propellants. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. The challenge of developing energetic materials that are less sensitive to accidental stimuli continues to be of critical importance. This volume opens with discussions of some determinants of sensitivity and its correlations with various molecular and crystal properties. The next several chapters deal in considerable detail with different aspects and mechanisms of the initiation of detonation, and its quantitative description. The second half of this volume focuses upon combustion. Extensive studies model ignition and combustion, with applications to different propellants. The final chapter is an exhaustive computational treatment of the mechanism and kinetics of combustion initiation reactions of ammonium perchlorate. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field. - Overall emphasis is on theory and computation, presented in the context of relevant experimental work - Presents a unique state-of-the-art treatment of the subject - Contributors are preeminent researchers in the field