Download Free Jackknife Book in PDF and EPUB Free Download. You can read online Jackknife and write the review.

The jackknife and bootstrap are the most popular data-resampling meth ods used in statistical analysis. The resampling methods replace theoreti cal derivations required in applying traditional methods (such as substitu tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further devel opments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems.
The jackknife is a resampling method that uses subsets of the original database by leaving out one observation at a time from the sample. The paper develops fast algorithms for jackknifing inequality indices with only a few passes through the data. The number of passes is independent of the number of observations. Hence, the method provides an efficient way to obtain standard errors of the estimators even if sample size is large. We apply our method using micro data on individual incomes for Germany and the US.
This monograph connects the jackknife, the bootstrap, and many other related ideas into a unified exposition.
The jackknife and the bootstrap are nonparametric methods for assessing the errors in a statistical estimation problem. They provide several advantages over the traditional parametric approach: the methods are easy to describe and they apply to arbitrarily complicated situations; distribution assumptions, such as normality, are never made. This monograph connects the jackknife, the bootstrap, and many other related ideas such as cross-validation, random subsampling, and balanced repeated replications into a unified exposition. The theoretical development is at an easy mathematical level and is supplemented by a large number of numerical examples. The methods described in this monograph form a useful set of tools for the applied statistician. They are particularly useful in problem areas where complicated data structures are common, for example, in censoring, missing data, and highly multivariate situations.
An essential guide to designing, conducting, and analyzing event-related potential (ERP) experiments, completely updated for this edition. The event-related potential (ERP) technique, in which neural responses to specific events are extracted from the EEG, provides a powerful noninvasive tool for exploring the human brain. This volume describes practical methods for ERP research along with the underlying theoretical rationale. It offers researchers and students an essential guide to designing, conducting, and analyzing ERP experiments. This second edition has been completely updated, with additional material, new chapters, and more accessible explanations. Freely available supplementary material, including several online-only chapters, offer expanded or advanced treatment of selected topics. The first half of the book presents essential background information, describing the origins of ERPs, the nature of ERP components, and the design of ERP experiments. The second half of the book offers a detailed treatment of the main steps involved in conducting ERP experiments, covering such topics as recording the EEG, filtering the EEG and ERP waveforms, and quantifying amplitudes and latencies. Throughout, the emphasis is on rigorous experimental design and relatively simple analyses. New material in the second edition includes entire chapters devoted to components, artifacts, measuring amplitudes and latencies, and statistical analysis; updated coverage of recording technologies; concrete examples of experimental design; and many more figures. Online chapters cover such topics as overlap, localization, writing and reviewing ERP papers, and setting up and running an ERP lab.
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.
The most authoritative and up-to-date core econometrics textbook available Econometrics is the quantitative language of economic theory, analysis, and empirical work, and it has become a cornerstone of graduate economics programs. Econometrics provides graduate and PhD students with an essential introduction to this foundational subject in economics and serves as an invaluable reference for researchers and practitioners. This comprehensive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of econometrics. Covers the full breadth of econometric theory and methods with mathematical rigor while emphasizing intuitive explanations that are accessible to students of all backgroundsDraws on integrated, research-level datasets, provided on an accompanying websiteDiscusses linear econometrics, time series, panel data, nonparametric methods, nonlinear econometric models, and modern machine learningFeatures hundreds of exercises that enable students to learn by doingIncludes in-depth appendices on matrix algebra and useful inequalities and a wealth of real-world examplesCan serve as a core textbook for a first-year PhD course in econometrics and as a follow-up to Bruce E. Hansen’s Probability and Statistics for Economists