Download Free Iterative Approximation Of Fixed Points Book in PDF and EPUB Free Download. You can read online Iterative Approximation Of Fixed Points and write the review.

This monograph gives an introductory treatment of the most important iterative methods for constructing fixed points of nonlinear contractive type mappings. For each iterative method considered, it summarizes the most significant contributions in the area by presenting some of the most relevant convergence theorems. It also presents applications to the solution of nonlinear operator equations as well as the appropriate error analysis of the main iterative methods.
Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
Functional Analysis, Fixed Points Theory and Iterative Schemes are key areas of research in Mathematics today. This work introduces the readers to introductory part of functional analysis, fixed points theory and some iterative schemes and applications in solving differential equations. It is interesting to see how the iterative schemes work in obtaining solutions to initial value problems. Several maps of interest are explained and their relationship given concrete examples to illustrate the idea. Much attention is given to a special class of problems in non-linear functional analysis namely: iterative approximation of k-strictly pseudo-contractive maps in Hilbert spaces using Modified Picard Iteration.
Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any reader working in the area of Information-Based Complexity. The worst-case settings are analyzed here. Several classes of functions are studied with special emphasis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises.
Fixed Points: Algorithms and Applications covers the proceedings of the First International Conference on Computing Fixed Points with Applications, held in the Department of Mathematical Sciences at Clemson University, Clemson, South Carolina on June 26-28, 1974. This book is composed of 21 chapters and starts with reviews of finding roots of polynomials by pivoting procedures and the relations between convergence and labeling in approximation algorithm. The next chapters deal with the principles of complementary pivot theory and the Markovian decision chains; the method of continuation for Brouwer fixed point calculation; a fixed point approach to stability in cooperative games; and computation of fixed points in a nonconvex region. Other chapters discuss a computational comparison of fixed point algorithms, the fundamentals of union jack triangulations, and some aspects of Mann’s iterative method for approximating fixed points. The final chapters consider the application of fixed point algorithms to the analysis of tax policies and the pricing for congestion in telephone networks. This book will prove useful to mathematicians, computer scientists, and advance mathematics students.
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.