Download Free Issues And Challenges Of Intelligent Systems And Computational Intelligence Book in PDF and EPUB Free Download. You can read online Issues And Challenges Of Intelligent Systems And Computational Intelligence and write the review.

This carefully edited book contains contributions of prominent and active researchers and scholars in the broadly perceived area of intelligent systems. The book is unique both with respect to the width of coverage of tools and techniques, and to the variety of problems that could be solved by the tools and techniques presented. The editors have been able to gather a very good collection of relevant and original papers by prominent representatives of many areas, relevant both to the theory and practice of intelligent systems, artificial intelligence, computational intelligence, soft computing, and the like. The contributions have been divided into 7 parts presenting first more fundamental and theoretical contributions, and then applications in relevant areas.
Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
This book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issues in big data and cloud computing, computation linguistics, and cyber-physical systems. It also reports on important topics in intelligent information management. Written by active researchers, the respective chapters are based on selected papers presented at the XIV International Scientific and Technical Conference on Computer Science and Information Technologies (CSIT 2019), held on September 17–20, 2019, in Lviv, Ukraine. The conference was jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. Given its breadth of coverage, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and is sure to foster new discussions and collaborations among different groups.
The book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issue in big data and cloud computing, computation linguistics, cyber-physical systems as well as topics in intelligent information management. Written by active researchers, the different chapters are based on contributions presented at the workshop in intelligent systems and computing (ISC), held during CSIT 2016, September 6-9, and jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. All in all, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and it is expected to foster new discussions and collaborations among different groups.
The book presents high quality papers presented at the International Conference on Computational Intelligence in Data Mining (ICCIDM 2016) organized by School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India during December 10 – 11, 2016. The book disseminates the knowledge about innovative, active research directions in the field of data mining, machine and computational intelligence, along with current issues and applications of related topics. The volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science.
Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book: Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more Highlights swarm intelligence-based optimization solutions for software testing and reliability problems
Artificial Intelligence: Technologies, Applications, and Challenges is an invaluable resource for readers to explore the utilization of Artificial Intelligence, applications, challenges, and its underlying technologies in different applications areas. Using a series of present and future applications, such as indoor-outdoor securities, graphic signal processing, robotic surgery, image processing, character recognition, augmented reality, object detection and tracking, intelligent traffic monitoring, emergency department medical imaging, and many more, this publication will support readers to get deeper knowledge and implementing the tools of Artificial Intelligence. The book offers comprehensive coverage of the most essential topics, including: Rise of the machines and communications to IoT (3G, 5G). Tools and Technologies of Artificial Intelligence Real-time applications of artificial intelligence using machine learning and deep learning. Challenging Issues and Novel Solutions for realistic applications Mining and tracking of motion based object data image processing and analysis into the unified framework to understand both IoT and Artificial Intelligence-based applications. This book will be an ideal resource for IT professionals, researchers, under or post-graduate students, practitioners, and technology developers who are interested in gaining insight to the Artificial Intelligence with deep learning, IoT and machine learning, critical applications domains, technologies, and solutions to handle relevant challenges.
This book provides a comprehensive description of the novel coronavirus infection, spread analysis, and related challenges for the effective combat and treatment. With a detailed discussion on the nature of transmission of COVID-19, few other important aspects such as disease symptoms, clinical application of radiomics, image analysis, antibody treatments, risk analysis, drug discovery, emotion and sentiment analysis, virus infection, and fatality prediction are highlighted. The main focus is laid on different issues and futuristic challenges of computational intelligence techniques in solving and identifying the solutions for COVID-19. The book drops radiance on the reasons for the growing profusion and complexity of data in this sector. Further, the book helps to focus on further research challenges and directions of COVID-19 for the practitioners as well as researchers.
This volume presents recent research, challenging problems and solutions in Intelligent Systems– covering the following disciplines: artificial and computational intelligence, fuzzy logic and other non-classic logics, intelligent database systems, information retrieval, information fusion, intelligent search (engines), data mining, cluster analysis, unsupervised learning, machine learning, intelligent data analysis, (group) decision support systems, intelligent agents and multi-agent systems, knowledge-based systems, imprecision and uncertainty handling, electronic commerce, distributed systems, etc. The book defines a common ground for sometimes seemingly disparate problems and addresses them by using the paradigm of broadly perceived intelligent systems. It presents a broad panorama of a multitude of theoretical and practical problems which have been successfully dealt with using the paradigm of intelligent computing.