Download Free Isotope Mass Effects In Chemistry And Biology Book in PDF and EPUB Free Download. You can read online Isotope Mass Effects In Chemistry And Biology and write the review.

The field of isotope effects has expanded exponentially in the last decade, and researchers are finding isotopes increasingly useful in their studies. Bringing literature on the subject up to date, Isotope Effects in Chemistry and Biology covers current principles, methods, and a broad range of applications of isotope effects in the physical, biolo
As the title suggests, Isotope Effects in the Chemical, Geological and Bio Sciences deals with differences in the properties of isotopically substituted molecules, such as differences in the chemical and physical properties of water and the heavy waters. Since the various fields in which isotope effects are applied do not only share fundamental principles but also experimental techniques, this book includes a discussion of experimental apparatus and experimental techniques. Isotope Effects in the Chemical, Geological and Bio Sciences is an educational monograph addressed to graduate students and others undertaking isotope effect research. The fundamental principles needed to understand isotope effects are presented in appropriate detail. While it is true that these principles are more familiar to students of physical chemistry and some background in physical chemistry is recommended, the text provides enough detail to make the book an asset to students in organic and biochemistry, and geochemistry.
This Very Short Introduction is an exciting and non-traditional approach to understanding the terminology, properties, and classification of chemical elements. It traces the history and cultural impact of the elements on humankind from ancient times through today. Packed with anecdotes, The Elements is a highly engaging and entertaining exploration of the fundamental question: what is the world made from?
Nuclear chemistry comprises isotope chemistry, radiochemistry, radiation chemistry and nuclear reaction chemistry, along with applications. These interrelated fields are all covered in this textbook for chemists and chemical engineers. This new editionof the standard work 'Nuclear Chemistry' has been completely rewritten and restructured to suit teaching and learning needs in a wide range of chemistry courses, such as basic courses in radiochemistry, or more advanced nuclear chemistry courses.The book is divided into sections that closely fit teaching demands. The first chapter gives a broad introduction and background to the subject, and the second chapter covers stable isotopes. Chapters 3 to 9 comprise what is generally regarded as'radiochemistry'. Chapters 10 to 17 offer a course in nuclear reaction chemistry. Chapter 18 deals with biological radiation effects for the chemist. The last four chapters give a guide to nuclear energy: energy production, fuel cycle, waste management,the largest applied field of nuclear chemistry. Over 200 exercises, with model answers, remain largely unchanged from the first edition, so teachers working from the earlier text should find only advantages in switching to this new restructured coursebook on all aspects of nuclear chemistry. 'The book fully meets the authors objectives, it is well written in a logical, objective, thought-provoking and quite easily readable style. It should appeal to the serious student of radio- and nuclearchemistry at either undergraduate or postgraduate level, as well as to readers with a more general interest in nuclear science and its impact on the environment.' - Applied Radiation and Isotopes, July 1995 'This book is an excellent, readable accountof a significant part of the scientific achievements of more than half this century. The authors have dedicated the book to Nobel Laureate Glenn T. Seaborg and its scholarship makes it a fitting tribute.' - Radiological Protection Bulletin, December 1995
The suggestion that quantum-mechanical tunnelling might be a significant factor in some chemical reactions was first made fifty years ago by Hund, very soon after the principles of wave mechanics had been established by de Broglie, Schrodinger and Heisenberg, and similar ideas were put forward during the following thirty years by a number of authors. It was realised from the beginning that such effects would be particularly prominent in reactions involving the movement of protons or hydrogen atoms, and both theoretical and experimental work received a powerful stimulus in the discovery of deuterium in 1932. During the last twenty years theoretical predictions about the tunnel effect have been supported by an increasing body of experimental evidence, derived especially from studies of hydrogen isotope effects. The present book presents an attempt to summarize this evidence and to indicate the main lines of the basic theory. Details of mathematical manipu lation are restricted mainly to Chapter 2 and the Appendices, and many readers may prefer to confine themselves to the results obtained. The main emphasis has been on the kinetics of chemical reactions involving the transfer of protons, hydrogen atoms or hydride ions, although Chapter 6 gives an account of the role of the tunnel effect in molecular spectra, and Chapter 7 makes some mention of tunnelling in solid state phenomena, biological processes and the electrolytic discharge of hydrogen. Only passing references have been made to tunnelling by electrons.
The first edition of this book was based on the lectures which I gave at Cornell University during 1958 as George Fisher Baker Lecturer, and I would like to repeat my warmest thanks to Professor F. A. Long and the other members of the Department of Chemistry for their kindness and helpful advice. The present edition was largely written during the tenure of a Visiting Professorship awarded by the Royal Society and the Israeli Academy of Sciences. I am deeply indebted to both of these bodies and also to the hospitality of the Weizmann Institute of Science, in particular to Professor David Samuel and Professor F. S. Klein of the Isotopes Research Department. The subject as a whole has expanded greatly since 1959, especially in two fields, namely, the direct study of fast proton-transfer reactions (notably by the relaxation methods pioneered by Eigen), and the experi mental and theoretical study of hydrogen isotope effects. In order to keep the size of the book within reasonable bounds it has been necessary to adopt a selective policy, and this is particularly the case in Chapter 9 where I have chosen to treat a few types of reaction in some detail rather than to attempt a more complete coverage.
This revised and extended 6 volume handbook set is the most comprehensive and voluminous reference work of its kind in the field of nuclear chemistry. The Handbook set covers all of the chemical aspects of nuclear science starting from the physical basics and including such diverse areas as the chemistry of transactinides and exotic atoms as well as radioactive waste management and radiopharmaceutical chemistry relevant to nuclear medicine. The nuclear methods of the investigation of chemical structure also receive ample space and attention. The international team of authors consists of scores of world-renowned experts - nuclear chemists, radiopharmaceutical chemists and physicists - from Europe, USA, and Asia. The Handbook set is an invaluable reference for nuclear scientists, biologists, chemists, physicists, physicians practicing nuclear medicine, graduate students and teachers - virtually all who are involved in the chemical and radiopharmaceutical aspects of nuclear science. The Handbook set also provides further reading via the rich selection of references.