Download Free Isolation Of Keratin Degrading Microorganisms From Poultry Waste An Overview Book in PDF and EPUB Free Download. You can read online Isolation Of Keratin Degrading Microorganisms From Poultry Waste An Overview and write the review.

Keratin is an insoluble protein macromolecule with high stability and low degradation rate the keratinase enzyme degrade keratin the present study deals with isolation and identification and optimization of feather degrading bacterium. After the identification, analyzed the keratin degradation by crushed feather as a substrate of the media. The colony showed were keratinase production was identifies as Bacillus sp as per Bergey’s manual method. The isolated organism shows keratin degrading property. The maximum degrading property shows at pH 9. The minimum degrading activity shows at pH 6.
This book provides information about the sources, structure, and properties of keratin as well as its applications. The extraction from different biomass sources (e.g. feathers, hairs, nails, horn, hoof, and claws) as well as the characterization methods of these extracted materials are explained. The development of bioproducts from keratins is challenging and limited since they are neither soluble in polar solvents nor in non-polar solvents. Therefore, the utilization of different microorganisms for the degradation of keratin is also discussed. The main aim of this book is to highlight the unique features of keratin and to update readers with the possible prospects to develop various value-added products from keratins. The book is highly interesting to researchers working in industry and academia on bioproducts, tissue engineering, biocomposites, biofilm, and biofibers.
This edited book, is a collection of 20 articles describing the recent advancements in the application of microbial technology for sustainable development of agriculture and environment. This book covers many aspects like agricultural nanotechnology, promising applications of biofuels production by algae, advancements and application of microbial keratinase, biocontrol agents, plant growth promoting rhizobacteria, bacterial siderophore, use of microbes in detoxifying organophosphate pesticides, bio-surfactants, biofilms, bioremediation degradation of phenol and phenolic compounds and bioprospecting of endophytes. This book intends to bring the latest research advancements and technologies in the area of microbial technology in one platform, providing the readers an up-to-date view on the area. This book would serve as an excellent reference book for researchers and students in the agricultural, environmental and microbiology fields.
Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products provides extensive coverage of new developments, state-of-the-art technologies, and potential future trends, focusing on industrial biotechnology and bioengineering practices for the production of industrial products, such as enzymes, organic acids, biopolymers, and biosurfactants, and the processes for isolating and purifying them from a production medium. During the last few years, the tools of molecular biology and genetic and metabolic engineering have rendered tremendous improvements in the production of industrial products by fermentation. Structured by industrial product classifications, this book provides an overview of the current practice, status, and future potential for the production of these agents, along with reviews of the industrial scenario relating to their production. - Provides information on industrial bioprocesses for the production of microbial products by fermentation - Includes separation and purification processes of fermentation products - Presents economic and feasibility assessments of the various processes and their scaling up - Links biotechnology and bioengineering for industrial process development
Microbes and their biosynthetic capabilities have been invaluable in finding solutions for several intractable problems mankind has encountered in maintaining the quality of the environment. They have, for example, been used to positive effect in human and animal health, genetic engineering, environmental protection, and municipal and industrial waste treatment. Microorganisms have enabled feasible and cost-effective responses which would have been impossible via straightforward chemical or physical engineering methods. Microbial technologies have of late been applied to a range of environmental problems, with considerable success. This survey of recent scientific progress in usefully applying microbes to both environmental management and biotechnology is informed by acknowledgement of the polluting effects on the world around us of soil erosion, the unwanted migration of sediments, chemical fertilizers and pesticides, and the improper treatment of human and animal wastes. These harmful phenomena have resulted in serious environmental and social problems around the world, problems which require us to look for solutions elsewhere than in established physical and chemical technologies. Often the answer lies in hybrid applications in which microbial methods are combined with physical and chemical ones. When we remember that these highly effective microorganisms, cultured for a variety of applications, are but a tiny fraction of those to be found in the world around us, we realize the vastness of the untapped and beneficial potential of microorganisms. At present, comprehending the diversity of hitherto uncultured microbes involves the application of metagenomics, with several novel microbial species having been discovered using culture-independent approaches. Edited by recognized leaders in the field, this penetrating assessment of our progress to date in deploying microorganisms to the advantage of environmental management and biotechnology will be widely welcomed.
Due to the wide acceptance of poultry meat and eggs, poultry farming is the fastest growing global livestock industry. Nutrition plays a vital role in economic production and the maintenance of proper poultry health. Therefore, there is a great need to update balanced nutrient requirements for new breeds, utilize alternative feed resources, evaluate newer feed additives to optimize production while excluding antimicrobial feed additives and maintain overall health. The first section of this book contains six chapters that discuss the utilization of unconventional feeds, nanominerals to reduce mineral proportions in diets, and water intake affected by environmental temperature. The second section contains six chapters that describe proper nutritional management to improve gut health and immunity, the prevention of common diseases, and the amelioration of heat stress in poultry.
Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. - Offers basic understanding and a clear picture of various MCFs - Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others - Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications - Highlights the advances, challenges, and future opportunities in designing MCFs
Smart Bioremediation Technologies: Microbial Enzymes provides insights into the complex behavior of enzymes and identifies metabolites and their degradation pathways. It will help readers work towards solutions for sustainable medicine and environmental pollution. The book highlights the microbial enzymes that have replaced many plant and animal enzymes, also presenting their applications in varying industries, including pharmaceuticals, genetic engineering, biofuels, diagnostics and therapy. In addition, new methods, including genomics and?metagenomics, are being employed for the discovery of new enzymes from microbes. This book brings all of these topics together, representing the first resource on how to solve problems in bioremediation. Provides the most novel approaches in enzyme studies Gives insights in real-time enzymology that are correlated with bioremediation Serves as a valuable resource on the use of genomes, transcriptomes and proteomes with bioremediation Refers to enzymes as diagnostic tools
Worldwide energy and food crises are spotlighting the importance of bio-based products - an area many are calling on for solutions to these shortages. Biocatalysis and Agricultural Biotechnology encapsulates the cutting-edge advances in the field with contributions from more than 50 international experts comprising sectors of academia, industry, an
This book features carefully selected articles on emerging technologies for waste valorization and environmental protection. The term “waste valorization” is used particularly in engineering, economics, technology, business, environmental and policy literature to refer to any unit operation or collection of operations targeted at reusing, recycling, composting or converting wastes into useful products or energy sources without harming the environment. The book discusses the rudimentary concept, and describes a range of emerging technologies in the field, including nano, fuel-cell and membrane technologies, as well as membrane bioreactors. It also examines in detail essential and common processes in waste valorization, such as rigorous chemical engineering applications, mathematical modeling and other trans-disciplinary approaches. The chapters present high-quality research papers from the IconSWM 2018 conference.