Download Free Is Math Real Book in PDF and EPUB Free Download. You can read online Is Math Real and write the review.

How both logical and emotional reasoning can help us live better in our post-truth world In a world where fake news stories change election outcomes, has rationality become futile? In The Art of Logic in an Illogical World, Eugenia Cheng throws a lifeline to readers drowning in the illogic of contemporary life. Cheng is a mathematician, so she knows how to make an airtight argument. But even for her, logic sometimes falls prey to emotion, which is why she still fears flying and eats more cookies than she should. If a mathematician can't be logical, what are we to do? In this book, Cheng reveals the inner workings and limitations of logic, and explains why alogic -- for example, emotion -- is vital to how we think and communicate. Cheng shows us how to use logic and alogic together to navigate a world awash in bigotry, mansplaining, and manipulative memes. Insightful, useful, and funny, this essential book is for anyone who wants to think more clearly.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
One of the world’s most creative mathematicians offers a “brilliant” and “mesmerizing” (Popular Science) new way to look at math—focusing on questions, not answers Winner of the Los Angeles Times Book Prize and a New Scientist Best Book of the Year Where do we learn math: From rules in a textbook? From logic and deduction? Not really, according to mathematician Eugenia Cheng: we learn it from human curiosity—most importantly, from asking questions. This may come as a surprise to those who think that math is about finding the one right answer, or those who were told that the “dumb” question they asked just proved they were bad at math. But Cheng shows why people who ask questions like “Why does 1 + 1 = 2?” are at the very heart of the search for mathematical truth. Is Math Real? is a much-needed repudiation of the rigid ways we’re taught to do math, and a celebration of the true, curious spirit of the discipline. Written with intelligence and passion, Is Math Real? brings us math as we’ve never seen it before, revealing how profound insights can emerge from seemingly unlikely sources.
#1 INTERNATIONAL BESTSELLER AN ADAM SAVAGE BOOK CLUB PICK The book-length answer to anyone who ever put their hand up in math class and asked, “When am I ever going to use this in the real world?” “Fun, informative, and relentlessly entertaining, Humble Pi is a charming and very readable guide to some of humanity's all-time greatest miscalculations—that also gives you permission to feel a little better about some of your own mistakes.” —Ryan North, author of How to Invent Everything Our whole world is built on math, from the code running a website to the equations enabling the design of skyscrapers and bridges. Most of the time this math works quietly behind the scenes . . . until it doesn’t. All sorts of seemingly innocuous mathematical mistakes can have significant consequences. Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean. Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.
In this vibrant work, which is ideal for both teaching and learning, Apoorva Khare and Anna Lachowska explain the mathematics essential for understanding and appreciating our quantitative world. They show with examples that mathematics is a key tool in the creation and appreciation of art, music, and literature, not just science and technology. The book covers basic mathematical topics from logarithms to statistics, but the authors eschew mundane finance and probability problems. Instead, they explain how modular arithmetic helps keep our online transactions safe, how logarithms justify the twelve-tone scale commonly used in music, and how transmissions by deep space probes are similar to knights serving as messengers for their traveling prince. Ideal for coursework in introductory mathematics and requiring no knowledge of calculus, Khare and Lachowska's enlightening mathematics tour will appeal to a wide audience.
She Does Math! presents the career histories of 38 professional women and math problems written by them. Each history describes how much math the [Author]; took in high school and college; how she chose her field of study; and how she ended up in her current job. Each of the women present several problems typical of those she had to solve on the job using mathematics. There are many good reasons to buy this book: It contains real-life problems. Any student who asks the question, "Why do I have to learn algebra or trigonometry or geometry?" will find many answers in its pages. Students will welcome seeing solutions from real-world jobs where the math skills they are learning in class are actually used. The book provides strong female role models and supplies practical information about the job market. Students learn that they can only compete for these interesting, well-paying jobs by taking mathematics throughout their high school and college years. The book demonstrates the surprising variety of fields in which mathematics is used. Who should have this book? Your daughter or granddaughter, your sister, your former math teacher, your students--and young men, too. They want to know how the math they study is applied--and this book will show them.
Educational resource for teachers, parents and kids!
Mathematics in the Real World is a self-contained, accessible introduction to the world of mathematics for non-technical majors. With a focus on everyday applications and context, the topics in this textbook build in difficulty and are presented sequentially, starting with a brief review of sets and numbers followed by an introduction to elementary statistics, models, and graph theory. Data and identification numbers are then covered, providing the pathway to voting and finance. Each subject is covered in a concise and clear fashion through the use of real-world applications and the introduction of relevant terminology. Many sample problems – both writing exercises and multiple-choice questions – are included to help develop students’ level of understanding and to offer a variety of options to instructors. Covering six major units and outlining a one-semester course, Mathematics in the Real World is aimed at undergraduate liberal art students fulfilling the mathematics requirement in their degree program. This introductory text will be an excellent resource for such courses, and will show students where mathematics arises in their everyday lives.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
SHORTLISTED FOR THE 2017 ROYAL SOCIETY SCIENCE BOOK PRIZE Even small children know there are infinitely many whole numbers - start counting and you'll never reach the end. But there are also infinitely many decimal numbers between zero and one. Are these two types of infinity the same? Are they larger or smaller than each other? Can we even talk about 'larger' and 'smaller' when we talk about infinity? In Beyond Infinity, international maths sensation Eugenia Cheng reveals the inner workings of infinity. What happens when a new guest arrives at your infinite hotel - but you already have an infinite number of guests? How does infinity give Zeno's tortoise the edge in a paradoxical foot-race with Achilles? And can we really make an infinite number of cookies from a finite amount of cookie dough? Wielding an armoury of inventive, intuitive metaphor, Cheng draws beginners and enthusiasts alike into the heart of this mysterious, powerful concept to reveal fundamental truths about mathematics, all the way from the infinitely large down to the infinitely small.