Download Free Irrigation Sustainability With Saline And Alkali Waters Book in PDF and EPUB Free Download. You can read online Irrigation Sustainability With Saline And Alkali Waters and write the review.

This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.
This book presents systematic scientific appraisal, classification, genesis and viable technologies for reclamation and management of salt-affected soils and marginal quality waters across India and several other countries. Nature, solubility and geo-chemical mobility of salts have been provided as basis for the development of alkali and saline soils and groundwaters under specific agro-hydro-ecological regions. Chemical amendment (gypsum) based reclamation technology of alkali soils and related pre and post-reclamation water, nutrient and crop management interventions, including re-sodification issues have been comprehensively addressed. Features and operational guidelines of surface, subsurface, vertical and bio-drainage systems have been thoroughly discussed; likewise, amelioration of irrigation induced saline soils in inland and coastal regions and preventive measures for control of salinity and waterlogging along with environmental trade-offs. Practical approaches for amelioration and judicious use of saline, alkali, high SAR- saline and waste waters have been synthesized for different cropping and agro- forestry systems. Emerging issues on use of industrial by-products as amendments for alkali soils, physiological aspects of salt resistance, anatomical and biochemical mechanism of submergence tolerance, specific ion effects of poor quality waters, crop diversification, groundwater recharge, rejuvenation of tsunami affected coastal soils, safety against occurrence of poisonous gas in tube well pits, paddy straw burning and others have been adequately deliberated upon. Combining scientific principles with field experiences, the book is expected to serve as a useful knowledge base for research workers, teachers and students of soil science, agronomy, plant breeding, forestry, irrigation engineering, extension workers, environmentalists and planners associated with reclamation and management of salt affected soils and waters on sustainable basis in developing and developed countries.
The land degradation due to salinity and waterlogging is a global phenomenon, afflicting about one billion hectares within the sovereign borders of at least 75 countries. Besides staring at the food security, it has far reaching and unacceptable socio-economic consequences since a large proportion of this land is inhabited by smallholder farmers. The anthropogenic-environmental changes and the climate change are further adding to the problem of salinity and waterlogging. The phenomenon of sea-level rise will bring more areas under waterlogged salinity due to inundation by sea water. Thus, dealing with the salinity in reality is becoming a highly onerous task owing to its complex nature, uncertainty and differential temporal and spatial impacts. Nevertheless, with the need to provide more food, feed, fuel, fodder and fiber to the expanding population, and non-availability of new productive land, there is a need for productivity enhancement of these lands. In fact, the salt-affected and waterlogged lands cannot be neglected since huge investments have been made throughout the world in the development of irrigation and drainage infrastructure. The social, economic and environmental costs being high for theon-and/off-farm reclamation techniques, saline agriculture including agroforestry inculcated with modern innovative techniques, is now emerging as a potential tool not only for arresting salinity and waterlogging but for other environmental services like mitigate climate change, sequester carbon and biodiversity restoration. This publication attempts to address a wide range of issues, principles and practices related to the salinity involved in rehabilitation of waterlogged saline soils and judicious use of saline waters including sea water. Many of the site specific case studies typical to the saline environment including coastal ecologies sustaining productivity, rendering environmental services, conserving biodiversity and mitigating climate change have been described in detail. Written by leading researchers and experts of their own fields, the book is a must, not only for salinity experts but also for policy makers, environmentalists, students and educationists alike. More importantly, it contributes to reversing the salinity trends and teaches to sustain with salinity ensuring the livelihood of resource-poor farming families leaving in harsh ecologies including coastal areas which are more vulnerable to climate change.
This new book, Sustainable Micro Irrigation Design Systems for Agricultural Crops, brings together the best research for efficient micro irrigation methods for field crops, focusing on design methods and best practices. Covering a multitude of topics, the book presents research and studies on: Indigenous alternatives for use of saline and alkali wa
First title in a major new seriesAddresses improving water productivity to relieve problems of scarcity and competition to provide for food and environmental securityDraws from scientists having a multitude of disciplines to approach this important problemIn a large number of developing countries, policy makers and researchers are increasingly aware of the conflicting demands on water, and look at agriculture to be more effective in its use of water. Focusing on both irrigated and rain-fed agriculture, this book gives a state of the art review of the limits and opportunities for improving water productivity in crop production. It demonstrates how efficiency of water use can be enhanced to maximize yields. The book represents the first in a new series of volumes resulting from the Comprehensive Assessment of Water Management in Agriculture, a research program conducted by the CGIAR's Future Harvest Centres, the Food and Agriculture Organization of the United Nations and partners worldwide. It will be of significant interest to those working in areas of soil and crop science, water management, irrigation, and development studies.
This volume covers such areas in the field of soil salinity and water quality as: origin and distribution of salt-affected soils; management of alkali soils; quality criteria of irrigation water; wastewaters as a source of irrigation; and grasses and trees in the management of salt-affected soils.
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for our children. This discipline addresses current issues such as climate change, increasing food and fuel prices, starvation, obesity, water pollution, soil erosion, fertility loss, pest control and biodiversity depletion. Novel solutions are proposed based on integrated knowledge from agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, philosophy and social sciences. As actual society issues are now intertwined, sustainable agriculture will bring solutions to build a safer world. This book series analyzes current agricultural issues, and proposes alternative solutions, consequently helping all scientists, decision-makers, professors, farmers and politicians wishing to build safe agriculture, energy and food systems for future generations.