Download Free Irreversibilities In Quantum Mechanics Book in PDF and EPUB Free Download. You can read online Irreversibilities In Quantum Mechanics and write the review.

This book presents a unified theoretical and conceptual framework for the description of various irreversible phenomena in quantum mechanics. The general theory of irreversible processes is applied to specific physical models and situations such as energy and electron transfer processes, tunnelling in condensed media, superradiance, etc. Special attention is given to memory effects in relaxation processes and dissipationless states in dissipative systems. A separate chapter is devoted to the problem of irreversibility in quantum measurements. Audience: This book will be of interest to postgraduate students and specialists in quantum mechanics, statistical physics, and chemical physics. The work may serve as a complementary text for quantum mechanics courses.
The problem of irreversibility is ubiquitous in physics and chemistry. The present book attempts to present a unified theoretical and conceptual framework for the description of various irreversible phenomena in quantum mechanics. In a sense, this book supplements conventional textbooks on quantum mechanics by including the theory of irreversibilities. However, the content and style of this book are more appropriate for a monograph than a textbook. We have tried to arrange the material so that, as far as possible, the reader need not continually refer elsewhere. The references to the literature make no pretense of completeness. The book is by no means a survey of present theoretical work. We have tried to highlight the basic principles and their results, while the attention has been mainly paid to the problems in which the author himself has been involved. The book as a whole is designed for the reader with knowledge of theoretical physics (especially quantum mechanics) at university level. This book is based on the courses of lectures given at the Chemistry Department of Tel-Aviv University.
The subject of this book emerged from a series of lectures that the author gave at the Department of Physics of the University of North Texas during the 1992 Spring Semester, and reflects the vivacious discussions that he has been having with the students and the co-workers attending this course. The main conclusion of these discussions was that the major tenet of the "conservative" physicists, that classical physics must be recovered from quantum mechanics by adopting the statistical perspective of Gibbs, implying by necessity a Gibbs ensemble of Universes as well as a Gibbs ensemble of observers, is not satisfactory. It is actually as unsatisfactory as the dominant approaches to irreversibility. The book examines the current approaches to irreversibility, in classical and quantum physics, and shows that an objective theory of irreversibility does not exist yet, and that all the current theories of irreversibility share with quantum mechanics elements of subjectivity, making crucial the role played by the observer. In addition to the traditional quantum mechanical paradoxes, concerning the quantum theory of measurement, the book also discusses the new difficulties that the physics of chaos is causing to the widely accepted correspondence principle, and suggests that the Boltzmann dream, the dream that the fracture between dynamics and thermodynamics might be healed, cannot become true within the framework of the current physics, and that the establishment of a new physics is necessary for that ambitious purpose to be achieved.
The idea of editing the present volume in the Lecture Notes in Physics series arosewhileorganizingthe“ConferenceonIrreversibleQuantumDynamics”that took place at The Abdus Salam International Center for Theoretical Physics, Trieste, Italy, from July 29 to August 2, 2002. The aim of the Conference was to bring together di?erent groups of - searcherswhoseinterestsandpursuitsinvolveirreversibilityandtimeasymmetry in quantum mechanics. The Conference promoted open and in-depth exchanges of di?erent points of view, concerning both the content and character of qu- tum irreversibility and the methodologies used to study it. The following main themes were addressed: • Theoretical Aspects of Quantum Irreversible Dynamics • Open Quantum Systems and Applications • Foundational Aspects of Irreversible Quantum Dynamics • Asymmetric Time Evolution and Resonances Eachthemewasreviewedbyanexpertinthe?eld,accompaniedbymorespeci?c, research-like shorter talks. The whole topic of quantum irreversibility in all its manifold aspects has always raised a lot of interest, starting with the description of unstable systems in quantum mechanics and the issue of quantum measurement. Further, in - cent years a boost of activity concerning noise, dissipation and open systems has been prompted by the fast developing ?eld of quantum communication and information theory. These considerations motivated the editors to put together a volume that tries to summarize the present day status of the research in the ?eld, with the aim of providing the reader with an accessible and exhaustive introduction to it.
Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in "deeper-level" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in a consistent mathematical description of physical laws.
Symposium on the Foundations of Modern Physics 1993 is the fourth in a series of conferences held in Joensuu, Finland, in the years 1985, 1987 and 1990 and is devoted to offering discussions on foundational problems of quantum mechanics and other fundamental physical theories, taking into account new experimental developments. The surveying of the progress with respect to fundamental questions of the quantum theory of measurement forms the guiding line of thought of the present Symposium, the main themes discussed being: the interrelation of quantum measurement and irreversibility; the physics of information (concerned with questions of information processing and quantum noise); quantum interference and mesoscopic quantum effects (searching for the micro-macro borderline); and the quantum-classical relationship (the need for classical pointer and their realisation).
Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.
Introduces many-body theory of modern quantum statistical mechanics to graduate students in physics, chemistry, engineering and biology.
An introduction to the arrow of time and a new, related, theory of quantum measurement.