Download Free Irradiation Of Food And Packaging Book in PDF and EPUB Free Download. You can read online Irradiation Of Food And Packaging and write the review.

This book presents extensive coverage of irradiated foods and food products contaminated with food borne pathogens, and the effects on irradiation and packaging materials and additives. It also shows the effects ionizing radiation has on improved functional components in fresh fruits and vegetables.
The benefits of food irradiation to the public health have been described extensively by organizations such as the Centers for Disease Control and Prevention in the U.S. and the World Health Organization. The American Medical Association and the American Dietetic Association have both endorsed the irradiation process. Yet the potential health benefits of irradiation are unknown to many consumers and food industry representatives who are wary of irradiated foods due to myth-information from “consumer-advocate” groups. Food Irradiation Research and Technology presents the latest scientific findings of researchers at the leading edge of food irradiation. In this book, experts from industry, government, and academia: define the basic principles of irradiation and the public health benefits of irradiation describe advances in irradiation technology, detection technology, and radiation dosimetry review the regulations pertaining to food irradiation and the toxicological safety data provide food industry representatives and public health officials with effective methodologies to educate consumers and counteract misinformation review recent advances in the irradiation of meat and poultry, fruits and vegetables, seafood, and the use of irradiation as a phytosanitary treatment Food Irradiation Research and Technology appeals to a broad readership: industry food scientists involved in the processing of meat and fish, fruits and vegetables; food microbiologists and radiation processing specialists; government and industry representatives involved in the import and export of food commodities; and industry, local, and state officials involved in educational efforts regarding food irradiation. Food scientists and technologists share a responsibility to ensure that educational materials provided to the public regarding food safety and processing technologies are based on sound science and fact, not on misconceptions. Food Irradiation Research and Technology meets that goal.
Food preservation by irradiation is gaining recognition as a technology that is more environmentally benign than other current processes such as post-harvest chemical fumigation, it has less impact on thermally sensitive compounds than thermal decontamination technologies such as hot water or steam, and the technology is more accessible and cheaper. As the technical and economic feasibility, as well as the level of consumer acceptance, have increased its use has been growing fast. International organizations including the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) have coordinated and worked with others to develop norms and review the safety and efficacy of irradiated foods. Commended in the Foreword by Carl Blackburn, Food Irradiation Specialist, Joint FAO / IAEA Division of Nuclear Techniques in Food and Agriculture, this book makes a strong case for the use of this overwhelmingly safe food processing technique. This comprehensive book is a useful reference for food technologists, analytical chemists and food processing professionals, covering all aspects of gamma, electron beam and X-ray food irradiation, its impact on food matrices and microorganisms, legislation and market aspects. It is the first book to cover control and structural analysis in food irradiation and, being written by leading experts in the field, addresses the current global best practices. It contains updated information about the commercial application of food irradiation technology, especially regarding the type of radiation based on food classes and covers dosimetry, radiation chemistry, food decontamination, food quarantine, food processing and food sterilization.
A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
Bestrahlung von Lebensmitteln - dieser Band beschreibt Wirkungen, Anwendungsgebiete und Grenzen. International renommierte Fachleute konzentrieren sich in ihren Beiträgen auf wissenschaftliche und technologische Details, weniger auf die Streitfrage, ob Lebensmittel überhaupt bestrahlt werden sollten. Die Diskussion ist eingebettet in die Bestimmungen des Kontrollsystems HACCP, das in der fleisch- und fischverarbeitenden Industrie der USA und Europas mittlerweile Pflicht ist.
Antimicrobial Food Packaging takes an interdisciplinary approach to provide a complete and robust understanding of packaging from some of the most well-known international experts. This practical reference provides basic information and practical applications for the potential uses of various films in food packaging, describes the different types of microbial targets (fungal, bacteria, etc.), and focuses on the applicability of techniques to industry. Tactics on the monitoring of microbial activity that use antimicrobial packaging detection of food borne pathogens, the use of biosensors, and testing antimicrobial susceptibility are also included, along with food safety and good manufacturing practices. The book aims to curtail the development of microbiological contamination of food through anti-microbial packaging to improve the safety in the food supply chain. - Presents the science behind anti-microbial packaging and films reflecting advancements in chemistry, microbiology, and food science - Includes the most up-to-date information on regulatory aspects, consumer acceptance, research trends, cost analysis, risk analysis and quality control - Discusses the uses of natural and unnatural compounds for food safety and defense
Irradiation for Quality Improvement, Microbial Safety and Phytosanitation of Fresh Produce presents the last six and a half decades of scientific information on the topic. This book emphasizes proven advantages of ionizing irradiation over the commonly used postharvest treatments for improving postharvest life of fresh fruits and vegetables to enhance their microbial safety. This reference is intended for a wide range of scientists, researchers, and students in the fields of plant diseases and postharvest diseases of fruits and vegetables. It is a means for disease control to promote food safety and quality for the food industry and can be used in food safety and agriculture courses. - Discusses pathogen resistance to common chemical synthetic compounds - Presents up-to-date research and benefits of phytosanitary irradiation - Includes comprehensive research for alternative treatments for postharvest disease control - Provides the non-residual feature of ionizing radiation as a physical means for disease control to produce chemical free foods
A comprehensive review of the many new developments in the growing food processing and packaging field Revised and updated for the first time in a decade, this book discusses packaging implications for recent nonthermal processing technologies and mild food preservation such as high pressure processing, irradiation, pulsed electric fields, microwave sterilization, and other hurdle technologies. It reviews typical nonthermal processes, the characteristics of food products after nonthermal treatments, and packaging parameters to preserve the quality and enhance the safety of the products. In addition, the critical role played by packaging materials during the development of a new nonthermal processed product, and how the package is used to make the product attractive to consumers, is discussed. Packaging for Nonthermal Processing of Food, Second Edition provides up to date assessments of consumer attitudes to nonthermal processes and novel packaging (both in the U.S. and Europe). It offers a brand new chapter covering smart packaging, including thermal, microbial, chemical, and light sensing biosensors, radio frequency identification systems, and self-heating and cooling packaging. There is also a new chapter providing an overview of packaging laws and regulations in the United States and Europe. Covers the packaging types required for all major nonthermal technologies, including high pressure processing, pulsed electric field, irradiation, ohmic heating, and others Features a brand new chapter on smart packaging, including biosensors (thermal-, microbial-, chemical- and light-sensing), radio frequency identification systems, and self-heating and cooling packaging Additional chapters look at the current regulatory scene in the U.S. and Europe, as well as consumer attitudes to these novel technologies Editors and contributors bring a valuable mix of industry and research experience Packaging for Nonthermal Processing of Food, Second Edition offers many benefits to the food industry by providing practical information on the relationship between new processes and packaging materials, to academia as a source of fundamental knowledge about packaging science, and to regulatory agencies as an avenue for acquiring a deeper understanding of the packaging requirements for new processes.
This book is an updating of Food Packaging and Preservation, Theory and Practice published in 1986 by Elsevier Applied Science. Since that date, many things have changed in the world. Hence the name given to the first IFTEC meeting held at the Hague (NL), November 15-18, 1992 Food Technology for a Changing World. Is the world changing for better or worse and what can food technology improve? The keynote lecture of the IFTEC meeting dealt with hunger and the challenge it represents to food science and technology. In the preface to the 1986 book it was suggested that food packaging could solve some of the problems of crop preservation in countries where starvation is prevalent. However, such thoughts did not solve any problems. The famine is still spreading in Africa. The unbalanced north-south situation evoked in the 1986 preface has not improved. The international market of foods and agricultural products is constantly changing and food packaging scientists can only explore new ways to help cope with this. Some of these ideas are approached in this book, particularly in chapters 9, 10 and 12.
Nanotechnology-Enhanced Food Packaging Timely overview of functional food packaging made with nanotechnology and nanomaterials In Nanotechnology-Enhanced Food Packaging, a distinguished group of researchers delivers a comprehensive and insightful introduction to the application of nanomaterials in food packaging. This edited volume covers recent innovations—as well as future perspectives—in the industry and offers a complete overview of different types of nanomaterials used in food packaging. The book also discusses the use of nanoparticles in the development of active and functional food packaging and the related environmental and toxicological aspects. Featuring one-of-a-kind contributions from leaders in the field, Nanotechnology-Enhanced Food Packaging provides real-world solutions to food packaging challenges and considers the legislative and economic implications of new technologies. Among the new developments in nanotechnology-enhanced food packaging covered by the book are: Thorough introduction to biopolymers in food packaging systems and nanostructures based on starch, their preparation, processing, and applications in packaging Comprehensive explorations of chitosan-based nanoparticles and their applications in the food industry Practical discussions of active packaging systems based on metal oxide nanoparticles and an overview of higher barrier packaging using nano-additives In-depth examinations of the characterization techniques for nanostructures in food packaging Perfect for materials scientists, food technologists, and polymer chemists, Nanotechnology-Enhanced Food Packaging also belongs on the bookshelves of plastics technologists and allied professionals in the food industry.