Download Free Irradiation Growth Of Zirconium Alloys Book in PDF and EPUB Free Download. You can read online Irradiation Growth Of Zirconium Alloys and write the review.

Experimental investigation of irradiation growth on annealed Zircaloy-4 and 20% to 50% cold-worked Zr-2.5wt%Nb specimens with stress relief has been carried out. The specimens are irradiated in a heavy water reactor at 610 K to 4.2 x 1024 n/m2 (E > 1.0 MeV). The growth strains increase linearly with fluence. The saturation of growth is not observed for all specimens. The difference of growth behavior between two kinds of Zircaloy-4 tube may be associated with the content of minor alloying elements and impurities that influence the microstructure evolution under irradiation.
Irradiation growth behavior of zirconium, Zircaloy-2 and Zircaloy-4,Zr-2.5Nb, and Zr-3.5Sn-0.8Mo-0.8Nb (EXCEL) was studied on specimens irradiated in the Experimental Breeder Reactor II (EBR-II) to fluences of 1.2 to 16.9 x 1025 neutrons (n).m-2 (E > 1 MeV) in the temperature range 644 to 725 K. In Zircaloy, growth and growth rate were observed to increase continuously with fluence up to 16.9 x 1025 n.m-2 with no indication of saturation in either recrystallized or cold-worked materials. Positive growth strains of 1.5% and negative strains of approximately 2% to 2.5% were observed in both recrystallized and cold-worked Zircaloy. The formation of both a-type loops and c component dislocations is recrystallized Zircaloy under irradiation appears to be the basis in this material for growth strains similar in magnitude to those in cold-worked Zircaloy. Alloy additions to zirconium can increase growth by as much as an order of magnitude for a given texture at the higher irradiation temperatures and fluences. A sharp change to increasing growth rate with temperature occurs in Zircaloy at ~670 K, with a similar trend indicated for the other alloys. Although growth in all these alloys is a strong function of crystallographic texture, an exact (1-3f) type of dependence is not always apparent. In Zr-2.5Nb the dependence of growth on texture appears to be masked by the precipitation of betaniobium, with a transition to a well-defined texture dependence being a function of fluence and temperature. Significant differences in growth behavior were observed in nominally similar Zircaloys, apparently due to minor microstructural or chemical differences.
The effect of high dose irradiation on irradiation growth in zirconium commercial Zr-1%Nb, Zr-2.5%Nb, Zr-1%Nb-1.3%Sn-0.4%Fe alloys at temperatures of ~80 and 320-360°C has been investigated.