Download Free Iot And Analytics For Sensor Networks Book in PDF and EPUB Free Download. You can read online Iot And Analytics For Sensor Networks and write the review.

Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
This book includes high-quality research papers presented at the 1st International Conference on Wireless Sensor Networks, Ubiquitous Computing and Applications (ICWSNUCA, 2021), which is held at Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India, during 26–27 February, 2021. This volume focuses on the applications, use-cases, architectures, deployments, and recent advances of wireless sensor networks as well as ubiquious computing. Different research topics are illustrated in this book, like wireless sensor networks for the Internet of Things; IoT applications for eHealth; smart cities; architectures for WSNs and IoT, WSNs hardware and new devices; low-power wireless technologies; wireless ad hoc sensor networks; routing and data transfer in WSNs; multicast communication in WSNs; security management in WSNs and in IoT systems; and power consumption optimization in WSNs.
This book includes high-quality research papers presented at the 1st International Conference on Wireless Sensor Networks, Ubiquitous Computing and Applications (ICWSNUCA, 2021), which is held at Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India, during 26–27 February, 2021. This volume focuses on the applications, use-cases, architectures, deployments, and recent advances of wireless sensor networks as well as ubiquious computing. Different research topics are illustrated in this book, like wireless sensor networks for the Internet of Things; IoT applications for eHealth; smart cities; architectures for WSNs and IoT, WSNs hardware and new devices; low-power wireless technologies; wireless ad hoc sensor networks; routing and data transfer in WSNs; multicast communication in WSNs; security management in WSNs and in IoT systems; and power consumption optimization in WSNs.
This book explores the frontiers and challenges of applying Artificial Intelligence (AI) techniques to Sensor Networks. It covers how sensor networks are widely used to collect environmental parameters in homes, buildings, vehicles, etc., and how they are used as a source of information to aid decision-making processes.
This book examines the Internet of Things (IoT) and Data Analytics from a technical, application, and business point of view. Internet of Things and Data Analytics Handbook describes essential technical knowledge, building blocks, processes, design principles, implementation, and marketing for IoT projects. It provides readers with knowledge in planning, designing, and implementing IoT projects. The book is written by experts on the subject matter, including international experts from nine countries in the consumer and enterprise fields of IoT. The text starts with an overview and anatomy of IoT, ecosystem of IoT, communication protocols, networking, and available hardware, both present and future applications and transformations, and business models. The text also addresses big data analytics, machine learning, cloud computing, and consideration of sustainability that are essential to be both socially responsible and successful. Design and implementation processes are illustrated with best practices and case studies in action. In addition, the book: Examines cloud computing, data analytics, and sustainability and how they relate to IoT overs the scope of consumer, government, and enterprise applications Includes best practices, business model, and real-world case studies Hwaiyu Geng, P.E., is a consultant with Amica Research (www.AmicaResearch.org, Palo Alto, California), promoting green planning, design, and construction projects. He has had over 40 years of manufacturing and management experience, working with Westinghouse, Applied Materials, Hewlett Packard, and Intel on multi-million high-tech projects. He has written and presented numerous technical papers at international conferences. Mr. Geng, a patent holder, is also the editor/author of Data Center Handbook (Wiley, 2015).
The Industrial Internet of Things (Industrial IoT--IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks' provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected.
The energy efficiency paradigm is a major bottleneck for the development of wireless sensor networks (WSNs) and Internet of Things (IoT) architectures and technologies. This edited book presents comprehensive coverage of energy harvesting sources and techniques that can be used for WSN and IoT systems.
The agricultural sector can benefit immensely from developments in the field of smart farming. However, this research area focuses on providing specific fixes to particular situations and falls short on implementing data-driven frameworks that provide large-scale benefits to the industry as a whole. Using deep learning can bring immense data and improve our understanding of various earth sciences and improve farm services to yield better crop production and profit. Smart Agricultural Services Using Deep Learning, Big Data, and IoT is an essential publication that focuses on the application of deep learning to agriculture. While highlighting a broad range of topics including crop models, cybersecurity, and sustainable agriculture, this book is ideally designed for engineers, programmers, software developers, agriculturalists, farmers, policymakers, researchers, academicians, and students.
Security and Privacy Issues in IoT Devices and Sensor Networks investigates security breach issues in IoT and sensor networks, exploring various solutions. The book follows a two-fold approach, first focusing on the fundamentals and theory surrounding sensor networks and IoT security. It then explores practical solutions that can be implemented to develop security for these elements, providing case studies to enhance understanding. Machine learning techniques are covered, as well as other security paradigms, such as cloud security and cryptocurrency technologies. The book highlights how these techniques can be applied to identify attacks and vulnerabilities, preserve privacy, and enhance data security. This in-depth reference is ideal for industry professionals dealing with WSN and IoT systems who want to enhance the security of these systems. Additionally, researchers, material developers and technology specialists dealing with the multifarious aspects of data privacy and security enhancement will benefit from the book's comprehensive information. - Provides insights into the latest research trends and theory in the field of sensor networks and IoT security - Presents machine learning-based solutions for data security enhancement - Discusses the challenges to implement various security techniques - Informs on how analytics can be used in security and privacy
This book covers techniques that can be used to analyze data from IoT sensors and addresses questions regarding the performance of an IoT system. It strikes a balance between practice and theory so one can learn how to apply these tools in practice with a good understanding of their inner workings. This is an introductory book for readers who have no familiarity with these techniques. The techniques presented in An Introduction to IoT Analytics come from the areas of machine learning, statistics, and operations research. Machine learning techniques are described that can be used to analyze IoT data generated from sensors for clustering, classification, and regression. The statistical techniques described can be used to carry out regression and forecasting of IoT sensor data and dimensionality reduction of data sets. Operations research is concerned with the performance of an IoT system by constructing a model of the system under study and then carrying out a what-if analysis. The book also describes simulation techniques. Key Features IoT analytics is not just machine learning but also involves other tools, such as forecasting and simulation techniques. Many diagrams and examples are given throughout the book to fully explain the material presented. Each chapter concludes with a project designed to help readers better understand the techniques described. The material in this book has been class tested over several semesters. Practice exercises are included with solutions provided online at www.routledge.com/9780367686314 Harry G. Perros is a Professor of Computer Science at North Carolina State University, an Alumni Distinguished Graduate Professor, and an IEEE Fellow. He has published extensively in the area of performance modeling of computer and communication systems.