Download Free Ionizing Radiationprotection And Dosimetry Book in PDF and EPUB Free Download. You can read online Ionizing Radiationprotection And Dosimetry and write the review.

This book provides a comprehensive yet accessible overview of all relevant topics in the field of radiation protection (health physics). The text is organized to introduce the reader to basic principles of radiation emission and propagation, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. The author’s website contains materials for instructors including PowerPoint slides for lectures and worked-out solutions to end-of-chapter exercises. The book serves as an essential handbook for practicing health physics professionals.
This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in different up to date references are presented in this book. The book deals also with accelerators, X-rays facilities, sealed sources, dosimetry, Monte Carlo simulation and radiation regulation. Each chapter is split in two parts depending on the level of details the readers want to focus on. The first part, accessible to a large public, provides a lot of simple examples to help understanding the physics concepts under radiation external exposure. The second part, called “Additional Information” is not mandatory; it aims on explaining topics more deeply, often using mathematical formulations. The book treats fundamental radiometric and dosimetric quantities to describe the interaction in materials under the aspects of absorbed dose processes in tissues. Definitions and applications on limited and operational radiation protection quantities are given. An important aspect are practical engineering tools in industrial, medical and research domains. Source characterization and shielding design are addressed. Also more ”exotic” topics, such as ultra intense laser and new generation accelerators, are treated. The state of the art is presented to help the reader to work with the book in a self-consistent way. The basic knowledge necessary to apply Monte Carlo methods in the field of radiation protection and dosimetry for external radiation exposure is provided. Coverage of topics such as variance reduction, pseudo-random number generation and statistic estimators make the book useful even to experienced Monte Carlo practitioners. Solved problems help the reader to understand the Monte Carlo process. The book is meant to be used by researchers, engineers and medical physicist. It is also valuable to technicians and students.
This book discusses important fundamentals of radiation safety with specific details on dose units, calculations, measuring, and biological effects of ionizing radiation. The author covers different exposure situations and their requirements, and relevant legislation and regulations governing radiation safety. The book also examines radioactive waste management, the transport of radioactive materials, emergency planning and preparedness and various examples of radiation protection programs for industrial, medical, and academic applications.
Fosters a thorough understand of radiation dosimetry concepts: detailed solutions to the exercises in the textbook Fundamentals of Ionizing Radiation Dosimetry!
This Safety Guide provides recommendations and guidance on fulfilling the requirements of IAEA Safety Standards Series No. GSR Part 3 for ensuring radiation protection and safety of radiation sources in medical uses of ionizing radiation with regard to patients, workers, carers and comforters, volunteers in biomedical research, and the public. It covers radiological procedures in diagnostic radiology (including dentistry), image guided interventional procedures, nuclear medicine, and radiotherapy. Recommendations and guidance are provided on applying a systematic approach to ensure that there is a balance between being able to utilize the benefits from medical uses of ionizing radiation and minimizing the risk of radiation effects to people.
A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.
This guide offers students a background and basic understanding of the biophysical bases of radiation, radiation safety standards and the key factors in radiation protection. A revised and expanded edition, the book's contents include: radiation dosimetry, basic physical principles, biological effects of radiation, criticality control and radiation surveillance. The author also highlights new findings on non-ionizing radiation (laser and microwaves), computer use in dose calculation and dose limit recommendations from the International Commission on Radiation Protection. It aims to provide students with a framework and practical introduction to scientific principles and the problem-solving approaches needed in daily radiation protection practice.
An up-to-date reference and text that discusses the design of shields for radioactive sources, X-ray machines, low energy accelerators, and nuclear reactors. Introduces dosimetry in industry and medicine, examining the prediction and measurement of dose in the body from external and internal sources, and the biological effects of ionization radiation. The unified treatment emphasizes recent practice and includes modern computer methods and results. And, the considerable data presented in tabular and graphical forms provide a ready reference that minimizes the need for supplementary literature.