Download Free Ionic Liquids In Polymer Systems Book in PDF and EPUB Free Download. You can read online Ionic Liquids In Polymer Systems and write the review.

This book includes manuscripts from well-recognized international research groups that have taken different approaches to using ionic liquids in a variety of polymer applications. The chapters on polymer synthesis cover traditional free radical polymerizations, which have been shown to progress rapidly and yield high molecular weight polymers, and reverse atom transfer polymerizations. The ability to tune molecular weights and synthesize block copolymers has been attributed to long free radical lifetimes in ionic liquids. Other chapters cover a variety of uses for ionic liquids in polymer processing, designing specific material properties, and creating novel composites, such as ion gels and ionic liquid-carbon nanotube constructs. This book represents a new and exciting field in polymer chemistry and physics, and is growing rapidly as more fundamental knowledge of ionic liquids is uncovered.
The series covers the fundamentals and applications of different smart material systems from renowned international experts.
Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. Covers all industrial aspects and advanced applications of ionic liquids (ILs) Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more
This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.
An overview of the innovative uses of ionic liquids from sensors and actuators to biomedical applications.
Ionic polymers have capabilities to shape the pathway to new membranes and polymer systems that did not exist before. The imidazolium moiety has shown substantial abilities to integrate into a platform for ionic polymers allowing their growth and formation through imidazolium use as a building block. Addition of this component, both ionic and non-ionic, into a polymer matrix has been developed, but the creation of highly tunable, modular polymer structure that contains imidazolium has the potential to surpass previous iterations of ionic compounds and materials in gas separation. After developing a tailorable approach to high performance ionic polymers, we have formed ionic polyimides and polyamides that have been used for various applications such as gas separation, coatings, and films. The ionic polyimides and polyamides which were formed have the potential to be used as CO2/light gas membranes.The hardest factor to overcome within membrane separation is the flux-selectivity tradeoff which describes the upper limits of permeability, gases ability to flow through a membrane, and selectivity, one gas's ability over another to permeate. With the addition of these ionic units into the backbone and as "free"-ILs within the polymer matrix, the permeabilities of these materials can be greatly increased. Through systematic design and study of materials, the structure-property relationship of these newly developed ionic polymers can be determined and applied to further the understanding of these unique polymer systems.
Reflecting the dramatic rise in interest shown in this field over the last few years, this book collates the widespread knowledge into one handy volume. It covers in depth all classes of ionic liquids thus far in existence, with the individual chapters written by internationally recognized experts. The text is written to suit several levels of difficulty, containing information on basic physical chemistry in ionic liquids, a theory on the conductivity as well as plating protocols suited to undergraduate courses. The whole is rounded off with an appendix providing experimental procedures to enable readers to experiment with ionic liquids for themselves.
Capillary Electromigration Separation Methods is a thorough, encompassing reference that not only defines the concept of contemporary practice, but also demonstrates its implementation in laboratory science. Chapters are authored by recognized experts in the field, ensuring that the content reflects the latest developments in research. Thorough, comprehensive coverage makes this the ideal reference for project planning, and extensive selected referencing facilitates identification of key information. The book defines the concept of contemporary practice in capillary electromigration separation methods, also discussing its applications in small mass ions, stereoisomers, and proteins. Edited and authored by world-leading capillary electrophoresis experts Presents comprehensive coverage on the subject Includes extensive referencing that facilitates the identification of key research developments Provides more than 50 figures and tables that aid in the retention of key concepts
This book presents recent advances in the use of ionic liquids in medicine and pharmaceutics with particular emphasis on addressing critical pharmaceutical challenges, including the low solubility, polymorphism, and bioavailability of drugs. It also provides insights into the development of the biologically functionalized ionic liquids suitable for medical and pharmaceutical applications. Ionic liquids have been used as potential solvents or materials in the fields of pharmaceutical drug delivery and formulations because of their unique and tunable physicochemical and biological properties. Readers find explanations of the diverse approaches to the application of ionic liquids in drug solubility, active pharmaceutical ingredient (API) formulation, and drug delivery systems, such as topical, transdermal, and oral delivery, with particular emphasis on recent developments. Particular attention is given to the development of ionic liquid-assisted effective drug delivery techniques for sparingly soluble or insoluble drug molecules. This book also discusses the biological activities of ionic liquids for possible applications in drug formulation and drug delivery systems. Scientists in disciplines such as chemistry, biology, and pharmaceutics find this book instructive and informative for developing ionic liquid-based drug formulations or drug delivery systems.
The applications of ionic liquids can be enormously expanded by arranging the organic ions in the form of a polymer architecture. Polymerized ionic liquids (PILs), also known as poly(ionic liquid)s or polymeric ionic liquids, provide almost all features of ionic polymers plus a rare versatility in design. The mechanical properties of the solid or solid-like polymers can also be controlled by external stimuli, the basis for designing smart materials. Known for over four decades, PILs are a member of the ionic polymers family. Although the previous forms of ionic polymers have a partial ionicity, PILs are entirely composed of ions. Therefore, they offer a better flexibility for designing a responsive architecture as smart materials. Despite the terminology, PILs can be synthesized from solid organic ionic salts since the monomer liquidity is not a requirement for the polymerization process. Ionicity can also be induced to a neutral polymer by post-polymerization treatments. This is indeed an emerging field whose capabilities have been somehow overshadowed by the popularity of ionic liquids. However, recent reports in the literature have shown impressive potentials for the future. Written by leading authors, the present book provides a comprehensive overview of this exciting area, discussing various aspects of PILs and their applications as smart materials. Owing to the novelty of this area of research, the book will appeal to a broad readership including students and researchers from materials science, polymer science, chemistry, and physics.