Download Free Ionic Liquid Properties Book in PDF and EPUB Free Download. You can read online Ionic Liquid Properties and write the review.

This comprehensive database on physical properties of pure ionic liquids (ILs) contains data collected from 269 peer-reviewed papers in the period from 1982 to June 2008. There are more than 9,400 data points on the 29 kinds of physicochemical properties for 1886 available ionic liquids, from which 807 kinds of cations and 185 kinds of anions were extracted. This book includes nearly all known pure ILs and their known physicochemical properties through June 2008. In addition, the authors incorporate the main applications of individual ILs and a large number of references. - Nearly 50 tables include typical data, experimental and modelling or simulation comparison, and model parameters, enhancing the application of ILs - 100 figures--from QSPR, EOS and gE models to quantum and molecular simulations--help readers understand ILs at molecular level - Applications illustrate the role of IL properties in industry, in particular the development of novel clean processes and products
Ionic liquids (ILs) are a class of low melting point, ionic compounds which have a variety of properties allowing many of them to be sustainable green solvents. These non-molecular solvents possess high thermal stabilities and negligible vapour pressures making them attractive alternatives to environmentally unfriendly solvents that produce volatile organic compounds (VOCs). In this book, the authors present research on the properties, applications and hazards of ionic liquids. Some of the topics discussed include challenges and perspectives of ionic liquids vs. traditional solvents for cellulose processing; ionic liquids as sustainable extractants in petrochemical processing; bronsted acid-base ionic liquids and membranes as ion conducting materials; and, physical and chemical properties of ionic liquids.
This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, and of their predictive power will accompany the exposition of experimental ones. This book is a must read for postgraduate students, for post-docs, and for researchers who are interested in understanding the structural properties of ILs.
Ionic Liquids in Separation Technology reports on the most important fundamental and technological advances in separation processes using ionic liquids. It brings together the latest developments in this fascinating field, supplements them with numerous practical tips, and thus provides those working in both research and industry with an indispensable source of information. The book covers fundamental topics of physical, thermal, and optical properties of ionic liquids, including green aspects. It then moves on to contexts and applications, including separation of proteins, reduction of environmental pollutants, separation of metal ions and organic compounds, use in electrochromic devices, and much more. For the specialist audience the book serves as a recompilation of the most important knowledge in this field, whereas for starting researchers in ionic liquid separation technology the book is a great introduction to the field. - First book in the marketplace dedicated to ionic liquids in separation technology - Contributions from scientists in academia and researchers in industry ensure the coverage of both scientific fundamentals and industrial applications - Covers a broad collection of applications in separation technology which makes the book a single source of information - Includes many practical tips for researchers in industry and scientists who apply ionic liquids in their work
This handbook is a valuable resource for scientists, engineers, graduate students, managers, decision makers, and those who are interested in ionic liquids. Many industrial applications rely on the use of Ionic Liquid Mixtures, as in solar energy storage, waste recycling or batteries.Physicochemical Properties of Ionic Liquid Mixtures is a useful handbook that contains the following features: - the physicochemical properties and property models of mixtures containing ionic liquids - supplemented by a comprehensive database of properties listing ionic liquid systems collected from more than 800 dependable literature sources - over 60,000 data entries on 39 types of physicochemical properties for 1388 mixtures, including binary, ternary, quaternary and other mixtures.
See Table of Contents (PMP)
Ionic liquids in Analytical Chemistry: New Insights and Recent Developments focuses on the use of these materials in the field of chemical analysis, paying attention to different areas such as sample preparation, separation techniques, spectroscopy and electrochemical methods. Chapters describe the structure and properties of new ionic liquids and eutectic solvents that are widely used in analytical chemistry, review ionic liquids in sample preparation, liquid, micellar liquid and gas chromatography, and capillary electrophoresis. Final chapters are devoted to spectroscopic and electrochemical techniques. The whole volume provides a broad overview of recent applications of ionic liquids. The book will serve as a valuable resource to researchers and laboratory technicians working in the field, as well as instructors and students of analytical chemistry. Gathers the contributions of leading authorities on the use of ionic liquids in analytical science Describes the structure and properties of the newer ionic liquids used in chemical analysis Examines the new performance of ionic liquids in analytical chemistry applications
Written by experts who have been part of this field since its beginnings in both research and academia, this textbook introduces readers to this evolving topic and the broad range of applications that are being explored. The book begins by examining what it is that defines ionic liquids and what sets them apart from other materials. Chapters describe the various types of ionic liquids and the different techniques used to synthesize them, as well as their properties and some of the methods used in their measurement. Further chapters delve into synthetic and electrochemical applications and their broad use as "Green" solvents. Final chapters examine important applications in a wide variety of contexts, including such devices as solar cells and batteries, electrochemistry, and biotechnology. The result is a must-have resource for any researcher beginning to work in this growing field, including senior undergraduates and postgraduates.
Sustainability, defined as the way to meet the needs of the present generation without compromising the ability of future ones to meet their own, is one of the main challenges of modern society. Within this context, chemistry plays a significant role, and solvent nature as well as its environmental impact are pivotal issues frequently addressed. Ionic liquids, i.e. organic salts that have melting temperatures lower than 100 °C, have been frequently hailed as alternatives to conventional organic solvents. Their greenness has been mainly ascribed to their low vapor pressure and flammability. However, in addition to this, their high solubilizing ability and low miscibility with conventional organic solvents frequently allow for reducing the amount used, as well as for their recycling. Ionic liquids, especially the ones featured by aromatic cations, are frequently described as “polymeric supramolecular fluids” constructed through the establishment of feeble but cooperative supramolecular interactions like Coulomb and π-π interactions, as well as hydrogen bonds. In general, ionic liquids are also indicated as “designer solvents” as it is possible to tailor their features to specific applications by simply modifying their cation or anion structure. In this way, small changes in the ion’s structure can give rise to solvents showing very different properties. The above premises widely justify the growing interest in the properties and applications of ionic liquids, seen in recent literature (according to Scopus, more than 27,000 papers published in the last five years have “ionic liquids” as a keyword). Thanks to their properties, they have been variously used as solvent media, solvents for the obtainment of gel phases, components in the building of dye-sensitized solar cells, media for the preparation of thermochromic materials, etc. This Research Topic aims to present how structural features can determine not only the properties of ionic liquids, but also their possible employment. In this latter case, the interest arises from their ability to affect the outcome of a given reaction in terms of rate, yield, and nature of the products obtained for general use in the field of materials chemistry. This article collection is dedicated to Prof. Kenneth R. Seddon for his outstanding contribution to the formation and development of the ionic liquids community.
For many years, the related fields of molten salts and ionic liquids have drifted apart, to their mutual detriment. Both molten salts and ionic liquids are liquid salts containing only ions - all that is different is the temperature! Both fields involve the study of Coulombic fluids for academic and industrial purposes; both employ the same principles; both require skilled practitioners; both speak the same language; all then that is truly different is their semantics, and how superficial is that? The editors of this book, recognising that there was so much knowledge, both empirical and theoretical, which can be passed from the molten salt community to the ionic liquid community, and vice versa, organised a landmark meeting in Tunisia, designed to bridge the gap and heal the rift. Leaders from both communities met for a week for a mutual exchange, with a high tutorial content intermixed with cutting edge findings. This volume is a condensate of the principal offerings of that week, and emphasises the success which was achieved. Indeed, four future biannual meetings, under the title of “EUCHEM Conferences on Molten Salts and Ionic Liquids”, have now been planned as a direct result of this meeting of minds. Topics discussed in this volume include structure, dynamics, electrochemistry, interfacial and thermodynamic properties, spectroscopy, synthesis, and theoretical studies. Experimental and theoretical methods for investigating these data are elaborated, as are techniques for data collection and analysis. This book represents the first serious discussion on the transfer of these methods and techniques between the differing temperature regimes, and is a major contribution to the future of both fields.