Download Free Ionic Liquid Based Technologies For Environmental Sustainability Book in PDF and EPUB Free Download. You can read online Ionic Liquid Based Technologies For Environmental Sustainability and write the review.

Ionic Liquid-based Technologies for Environmental Sustainability explores the range of sustainable and green applications of IL materials achieved in recent years, such as gas solubility, biomass pre-treatment, bio-catalysis, energy storage, gas separation and purification technologies. The book also provides a reference material for future research in IL-based technologies for environmental and energy applications, which are much in-demand due to sustainable, reusable and eco-friendly methods for highly innovative and applied materials. Written by eminent scholars and leading experts from around the world, the book aims to cover the synthesis and characterization of broad range of ionic liquids and their sustainable applications. Chapters provide cutting-edge research with state-of-the-art developments, including the use of IL-based materials for the removal of pharmaceuticals, dyes and value-added metals. - Describes the fundamentals and major applications of ionic liquid materials - Covers up-to-date developments in novel applications of IL materials - Provides practical tips to aid researchers who work on ionic liquid applications
Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment discusses the principles and applications of the liquid membrane (LM) separation processes in organic and inorganic chemistry, analytical chemistry, biochemistry, biomedical engineering, gas separation, and wastewater treatment. It presents updated, useful, and systematized information on new LM separation technologies, along with new developments in the field. It provides an overview of LMs and LM processes, and it examines the mechanisms and kinetics of carrier-facilitated transport through LMs. It also discusses active transport, driven by oxidation-reduction, catalytic, and bioconversion reactions on the LM interfaces; modifications of supported LMs; bulk aqueous hybrid LM processes with water-soluble carriers; emulsion LMs and their applications; and progress in LM science and engineering. This book will be of value to students and young researchers who are new to separation science and technology, as well as to scientists and engineers involved in the research and development of separation technologies, LM separations, and membrane reactors. - Provides comprehensive knowledge-based information on the principles and applications of a variety of liquid membrane separation processes - Contains a critical analysis of new technologies published in the last 15 years
Ionic Liquids: Eco-friendly Substitutes for Surface and Interface Applications explores the growing interest in utilizing ionic liquids as sustainable alternatives for various industrial and biological applications. With their unique properties and environmentally friendly nature, ionic liquids have emerged as promising substitutes for toxic and volatile solvents, offering significant advantages in surface and interface chemistry. This book is divided into two parts: Part 1 covers the basics of ionic liquids, their surface/interface properties, and interactions with metallic surfaces. Part 2 focuses on the wide range of surface and interface applications of ionic liquids, including wastewater treatment, corrosion protection, catalysis, separation processes, medical devices, and sensing applications. Key Features: A complete book fully dedicated to the surface and interface chemistry of ionic liquids with seventeen chapters Covers fundamentals, recent progress, and applications in surface/interface chemistry Presents up-to-date research and interdisciplinary insights Includes relevant references and resources for further exploration This is a valuable reference for scientists and engineers who want to learn about ionic liquids' chemistry and applications
This book is part of a two-volume work that offers a unique blend of information on realistic evaluations of catalyst-based synthesis processes using green chemistry principles and the environmental sustainability applications of such processes for biomass conversion, refining, and petrochemical production. The volumes provide a comprehensive resource of state-of-the-art technologies and green chemistry methodologies from researchers, academics, and chemical and manufacturing industrial scientists. The work will be of interest to professors, researchers, and practitioners in clean energy catalysis, green chemistry, chemical engineering and manufacturing, and environmental sustainability. This volume focuses on catalyst synthesis and green chemistry applications for petrochemical and refining processes. While most books on the subject focus on catalyst use for conventional crude, fuel-oriented refineries, this book emphasizes recent transitions to petrochemical refineries with the goal of evaluating how green chemistry applications can produce clean energy through petrochemical industrial means. The majority of the chapters are contributed by industrial researchers and technicians and address various petrochemical processes, including hydrotreating, hydrocracking, flue gas treatment and isomerization catalysts.
Silk-based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine, Second Edition is a must-have reference, providing comprehensive coverage of silk-based biomaterials and their importance in translational uses and biomedicine. This new edition considers the progress made in the past eight years, featuring many new chapters, including a discussion of cutting-edge fabrication methods and techniques, new and improved blends/composites, and an expanded range of applications in tissue engineering, regenerative and precision medicine. The book holistically reviews the types, structure and properties, processing methods, and specific biomedical applications for silk-based biomaterials. This will be a vital resource for materials and tissue engineering scientists, R&D departments in industry and academia, and academics interested in biomaterials, regenerative, and precision medicine. - Covers all key silk biomaterial types, including mulberry, Bombyx mori and nonmulberry/wild silk protein fibroins, sericins and spider silk, as well as their composite blends and various structures and scaffold platforms - Describes the cutting-edge processing techniques for each silk type, from traditional to nonconventional methods, such as using ionic liquids and engineering nanofibers and other biomedical matrices - Explores a range of applications in tissue engineering and regenerative and precision medicine, including bioprinting, bioelectronics and medical devices
Handbook of Ionic Liquids A one-stop reference for researchers interested in ionic liquids and their applications Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability, constitutes an overview of the latest advances in ionic liquid chemistry. It offers a comprehensive summary of the development history of ionic liquids, their design, and the diverse array of applications—including green and sustainable synthesis, catalysis, drug development and medicine, biotechnology, materials science, and electrochemistry. The authors explain a variety of processes used to develop novel materials with ionic liquids and describe likely future developments using practical examples taken from contemporary research and development in the field. The book includes discussions of biomass conversion, CO2 capture, and more. You’ll also discover: A thorough introduction to the theory of ionic liquids, as well as their different types and recycling methods Comprehensive explorations of the physico-chemical properties of ionic liquids Practical discussions of ionic liquid synthesis and analysis, including green synthesis and heterocyclic chemistry applications Summary of the use of ionic liquids in materials science, including polymers, energy conversion, and storage devices Perfect for organic, catalytic, physical, analytical, and environmental chemists, Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability will also benefit electrochemists, materials scientists, and biotechnologists with an interest in ionic liquids and their application.
This book offers comprehensive information on the fundamentals and applications of ionic-liquid-based aqueous biphasic systems, which have predominantly (and successfully) been employed as alternative platforms for the extraction, separation and purification of diverse high-value products. The book consists of an initial introduction providing a brief overview, from fundamentals to applications, followed by nine chapters addressing the respective phase diagrams (interpretation and characterization) and remarkable examples of their applications. It also includes two final chapters focusing on recent developments in the search for more environmentally-benign and biocompatible ionic-liquid-based aqueous biphasic systems, and on the progress made to date concerning the recovery, recycling and reuse of the phase-forming components, the goal being the development of cost-effective and sustainable processes. The book offers an interesting and useful guide for a broad readership in the fields of green chemistry, biotechnology, chemical engineering, and biochemistry, among others. Mara G. Freire is a Coordinator Researcher at CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Portugal.
Surfactant Based Electrochemical Sensors and Biosensors discusses the applications of surfactants for Electrochemical Sensors. Surfactant based electrochemical sensors exhibits elevated sensitivity, selectivity, stability and accuracy as compared to other analytical techniques. The fabricated sensors can be applied for routine analysis in clinical and industrial samples with acceptable recovery. This book covers the emerging research trends and exploitation of surfactants for electrochemical sensor preparation for its applications in various fields such as academia, medicine, industry and monitoring of environmental species. The key focus of this book is to expand scientific research in the field of electrochemistry on surfactant based electrochemical sensors in order to construct highly sensitive devices. Part one presents the characteristics of surfactants and discusses their application for the fabrication of electrochemical sensors and bio sensors. Part two addresses the analysis of toxic chemicals and their quantitative determination and offers surfactant based sensing platforms for environmental modelling. Part three discusses the significance of the analysis of molecules and ions in biological and pharmaceutical sampling. Part four presents new methodologies for the determination of food additives and biological molecules present in food samples. Part 5 explores the Sustainability, Safety and Toxicity Aspects of Surfactant Modified Electrochemical Sensors and Biosensors. - Presents emerging research trends and discusses the exploitation of surfactants for electrochemical sensor preparation and its applications for multi-disciplinary fields - Addresses the development process for a sensitive, robust, and responsive sensor with the use of surfactants - Presents the utilization of surfactant based sensors in real-time analysis
In the present scenario, green technologies are playing significant role in changing the course of nation’s economic growth towards sustainability and providing an alternative socio-economic model that will enable present and future generations to live in a clean and healthy environment, in harmony with nature. Green technology, which is also known as clean technology, refers to the development and extension of processes, practices, and applications that improve or replace the existing technologies facilitating society to meet their own needs while substantially decreasing the impact of human on the planet, and reducing environmental risks and ecological scarcities. The concepts of Green Technologies, if endorsed and pervaded into the lives of all societies, will facilitate the aim of the Millennium Development Goals of keeping the environment intact and improve it for the civilization to survive. Green Technologies and Environmental Sustainability is focused on the goals of green technologies which are becoming increasingly important for ensuring sustainability. This book provides different perspectives of green technology in sectors like energy, agriculture, waste management and economics and contains recent advancements made towards sustainable development in the field of bioenergy, nanotechnology, green chemistry, bioremediation, degraded land reclamation. This book is written for a large and broad readership, including researchers, scientists, academicians and readers from diverse backgrounds across various fields such as nanotechnology, chemistry, agriculture, environmental science, water engineering, waste management and energy. It could also serve as a reference book for graduates and post-graduate students, faculties, environmentalist and industrial personnel who are working in the area of green technologies.
Ionic liquids and Their Application in Green Chemistry covers the synthesis and characterization of a broad range of ionic liquids (ILs) and their polymers, along with their application in multiple areas for nanomaterials and environmental sustainability. The book provides reference material for future research in IL-based technologies for environmental and energy applications. It covers not only the conventional IL applications. but also advanced IL polymer-based materials and their application in energy storage and energy generator applications. Finally, the book discusses the major fields of application of IL-based materials in synthesis of nanomaterials and the role in graphene synthesis and its composites. Written by eminent scholars and leading experts from around the world, this book brings the literature up to date on the most recent progress in the field of IL based materials and their applications for the environmental sustainability. - Covers a broad area of applications, discussing the combination of materials and green chemistry, along with ILs - Provides complete information on the relationship between IL-based nanocomposites and their application in energy harvesting - Presents detailed case studies to help readers understand all the pros and cons of using these materials in their future research