Download Free Ionic And Mixed Conducting Ceramics 10 Book in PDF and EPUB Free Download. You can read online Ionic And Mixed Conducting Ceramics 10 and write the review.

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Ionic and Mixed Conducting Ceramics 6¿, held during the 213th meeting of The Electrochemical Society, in Phoenix, Arizona from May 18 to 23, 2008.
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Ionic and Mixed Conducting Ceramics 7¿, held during the 217th meeting of The Electrochemical Society, in Vancouver, Canada, from April 25 to 30, 2010.
Advanced mixed ionic electronic conducting (MIEC) perovskites play an important role in many electrochemical systems for advanced energy technologies. They are major components in such devices as solid oxide fuel cells (SOFCs), oxygen separation membranes, chemical sensors and catalysts. In addition to energy technology, the development of these multifunctional materials is of crucial importance for transportation, aerospace engineering, and electronics. The use of these materials as chemical sensors is also important for anti-terrorism initiatives. The present book discusses progress and problems in the development of ionic, electronic, and MIEC materials as active materials in advanced energy systems; the development and design of solid-oxide fuel cells (SOFCs) for next-generation vehicles, chemical sensors and oxygen separation membranes; and identifies directions for future research, such as conducting mechanisms, stability and reliability of devices, degradation problems, crystal structure, classification of phase transitions exhibited by the materials.
Ceramic fuel cells, commonly known as solid oxide fuel cells (SOFCs), have been under development for a broad range of electric power generation applications. The most attractive feature of the SOFC is its clean and efficient production of electricity from a variety of fuels. The SOFC has the potential to be manufactured and operated cost-effectively. The widening interest in this technology, thus, arises from the continuing need to develop cleaner and more efficient means of converting energy sources into useful forms.This topical book provides a comprehensive treatise on solid oxide fuel cells and succeeds successfully in filling the gap in the market for a reference book in this field. Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses.
This book is intended to bring together into a single book all aspects of mixed conducting ceramic membranes. It provides a comprehensive description of the fundamentals of mixed ionic-electronic conducting (MIEC) membranes from the basic theories and materials to fabrication and characterization technologies. It also covers the potential applications of MIEC membrane technology in industry. This book offers a valuable resource for all scientists and engineers involved in R&D on mixed conducting ceramic membrane technology, as well as other readers who are interested in catalysis in membrane reactor, solid state electrochemistry, solid oxide fuel cells, and related topics. Xuefeng Zhu, PhD, is a Professor at State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China. Weishen Yang, PhD, is the team leader for Membrane Catalysis and New Catalytic Materials and a DICP Chair Professor at State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.