Download Free Ion Transport Processes Book in PDF and EPUB Free Download. You can read online Ion Transport Processes and write the review.

Modelling of heterogeneous processes, such as electrochemical reactions, extraction or ion-exchange, usually requires solving the transport problem associated to the process. Since the processes at the phase boundary are described by scalar quantities and transport quantities are vectors or tensors, coupling of them can take place only via conservation of mass, charge or momentum. In this book, transport of ionic species is addressed in a versatile manner, emphasizing the mutual coupling of fluxes in particular. Treatment is based on the formalism of irreversible thermodynamics, i.e. on linear (ionic) phenomenological equations, from which the most frequently used Nernst-Planck equation is derived. Limitations and assumptions made are thoroughly discussed. The Nernst-Planck equation is applied to selected problems at the electrodes and in membranes. Mathematical derivations are presented in detail so that the reader can learn the methodology of solving transport problems. Each chapter contains a large number of exercises, some of them more demanding than others.
"PH and Brain Function offers thorough coverage of this increasingly important area of research, beginning with the fundamental concepts, which include methodological and theoretical issues such as the measurement of pH and the concept of pH in neurobiology. It explores aspects of regulation and modulation of intracellular pH in brain cells, surveys the changes in pH that occur with neural activity and how these changes affect neural activity, and discusses the role of pH in the pathophysiology of neurological diseases." "pH and Brain Function is an important resource for researchers in all areas of neuroscience as well as cell biology and physiology." --Book Jacket.
The rhizosphere in soil environments refers to the narrow zone of soil influenced by the root and exudates. Microbial populations in the rhizosphere can be 10 - 100 times larger than the populations in the bulk soil. Therefore, the rhizosphere is bathed in root exudates and microbial metabolites and the chemistry and biology at the soil-root interface is governed by biotic (plant roots, microbes) and abiotic (physical and chemical) interactions. The research on biotic and abiotic interactions in the rhizosphere should, thus, be an issue of intense interest for years to come. This book, which consists of 15 chapters, addresses a variety of issues on fundamentals of microscopic levels and the impact on food chain contamination and the terrestrial ecosystem. It is an essential reference work for chemists and biologists studying environmental systems, as well as earth, soil and environmental scientists.* 15 chapter book, which addresses a variety of issues on fundamentals of microscopic levels and the impact on food chain contamination and the terrestrial ecosystem
The images in this textbook are in color. There is a less-expensive non-color version available - search for ISBN 9781680922202. Concepts of Biology is designed for the introductory biology course for nonmajors taught at most two- and four-year colleges. The scope, sequence, and level of the program are designed to match typical course syllabi in the market. Concepts of Biology includes interesting applications, features a rich art program, and conveys the major themes of biology.
The publication of the extensive seven-volume work Comprehensive Molecular Insect Science provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is endocrinology, and this volume, Insect Endocrinology, is designed for those who desire a comprehensive yet concise work on important aspects of this topic. Because this area has moved quickly since the original publication, articles in this new volume are revised, highlighting developments in the related area since its original publication. Insect Endocrinology covers the mechanism of action of insect hormones during growth and metamorphosis as well as the role of insect hormones in reproduction, diapause and the regulation of metabolism. Contents include articles on the juvenile hormones, circadian organization of the endocrine system, ecdysteroid chemistry and biochemistry, as well as new chapters on insulin-like peptides and the peptide hormone Bursicon. This volume will be of great value to senior investigators, graduate students, post-doctoral fellows and advanced undergraduate research students. It can also be used as a reference for graduate courses and seminars on the topic. Chapters will also be valuable to the applied biologist or entomologist, providing the requisite understanding necessary for probing the more applied research areas. - Articles selected by the known and respected editor-in-chief of the original major reference work, Comprehensive Molecular Insect Science - Newly revised contributions bring together the latest research in the quickly moving field of insect endocrinology - Review of the literature of the past five years is now included, as well as full use of data arising from the application of molecular technologies wherever appropriate
Membrane Transport Processes in Organized Systems is a softcover book containing portions of Physiology of Membrane Disorders (Second Edition). The parent volume contains six major sections. This text encompasses the fourth and fifth sections: Transport Events in Single Cells and Transport in Epithelia: Vectorial Transport through Parallel Arrays. We hope that this smaller volume, which deals with transport processes in single cells and in organized epithelia, will be helpful to individuals interested in general physiology, transport in single cells and epithelia, and the methods for studying those transport processes. THOMAS E. ANDREOLI JOSEPH F. HOFFMAN DARRELL D. FANESTIL STANLEY G. SCHULTZ Vll Preface to the Second Edition The second edition of Physiology of Membrane Disorders represents an extensive revision and a considerable expansion ofthe first edition . Yet the purpose of the second edition is identical to that of its predecessor, namely, to provide a rational analysis of membrane transport processes in individual membranes, cells, tissues, and organs, which in tum serves as a frame of reference for rationalizing disorders in which derangements of membrane transport processes play a cardinal role in the clinical expression of disease. As in the first edition, this book is divided into a number of individual, but closely related, sections. Part V represents a new section where the problem of transport across epithelia is treated in some detail. Finally, Part VI, which analyzes clinical derangements, has been enlarged appreciably.
Basic Neurochemistry, Eighth Edition, is the updated version of the outstanding and comprehensive classic text on neurochemistry. For more than forty years, this text has been the worldwide standard for information on the biochemistry of the nervous system, serving as a resource for postgraduate trainees and teachers in neurology, psychiatry, and basic neuroscience, as well as for medical, graduate, and postgraduate students and instructors in the neurosciences. The text has evolved, as intended, with the science. This new edition continues to cover the basics of neurochemistry as in the earlier editions, along with expanded and additional coverage of new research from intracellular trafficking, stem cells, adult neurogenesis, regeneration, and lipid messengers. It contains expanded coverage of all major neurodegenerative and psychiatric disorders, including the neurochemistry of addiction, pain, and hearing and balance; the neurobiology of learning and memory; sleep; myelin structure, development, and disease; autism; and neuroimmunology. - Completely updated text with new authors and material, and many entirely new chapters - Over 400 fully revised figures in splendid color - 61 chapters covering the range of cellular, molecular and medical neuroscience - Translational science boxes emphasizing the connections between basic and clinical neuroscience - Companion website at http://elsevierdirect.com/companions/9780123749475
Ion Transport Across Membranes focuses on the process of ion transport across cell membranes, including ion permeability, biological membranes, and thermodynamics. The selection first offers information on ion transport across biological membranes and electrical processes in nerve conduction. Topics include diffusion through biological membranes, active transport, voltage-current relations in the membrane, myelinated nerve fibers, and sequence of events in a nerve impulse. The text then ponders on generation of bioelectric potentials and optical observations on the interaction between acetyl cholinesterase and its substrate. The publication takes a look at ion permeability of the red cell and renal mechanisms of electrolyte transport. The text also tackles membrane permeability and electrical potential; transport of ions through biological membranes from the standpoint of irreversible thermodynamics; and electrochemical studies with model membranes. Topics include membranes of high electrochemical activity in physicochemical and model studies of biological interest and membrane resting potential. The selection is a vital reference for readers interested in ion transport across membranes.
This volume is one of those published from the proceedings of the invited lectures to the First International Congress of Comparative Physiology and Biochemistry I organized at Liege (Belgium) in August 1984 under the auspices of the Section of Comparative Physiology and Biochemistry of the International Union of Biological Sciences. In a general foreword to these different volumes, it seems to me appropriate to consider briefly what may be the comparative approach. Living organisms, beyond the diversity of their morphological forms, have evolved a widespread range of basic solutions to cope with the different problems, both organismal and environmental with which they are faced. Soon after the turn of the century, some biologists realized that these solutions can be best comprehended in the frame work of a comparative approach integrating results of physiological and biochemical studies done at the organismic, cellular and molecular levels. The development of this approach amongst both physiologists and biochemists remained, however, extremely slow until recently.