Download Free Ion Implantation Technology Book in PDF and EPUB Free Download. You can read online Ion Implantation Technology and write the review.

Ion Implantation: Science and Technology serves as both an introduction to and tutorial on the science, techniques, and machines involved in ion implantation. The book is divided into two parts. Part 1 discusses topics such as the history of the ion implantation; the different types and purposes of ion implanters; the penetration of energetic ions into solids; damage annealing in silicon; and ion implantation metallurgy. Part 2 covers areas such as ion implementation system concepts; ion sources; underlying principles related to ion optics; and safety and radiation considerations in ion implantation. The text is recommended for engineers who would like to be acquainted with the principles and processes behind ion implantation or make studies on the field.
Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.
"New results in the field of ion implantation from the experienced scientists from different countries are presented in this book. Influence of ion implantation on structure and properties of semi-conducting materials, instrumental steels and alloys, nanocomposite coatings, including multielement ones, titanium alloys with the shape memory effect and super-elasticity are discussed in detail within this book. New data on novel applications of ion implantation for the modification and testing (radiation hardness simulation) of memristive devices, as well as application of ion implantation of group V dopants in the MCT epilayer are presented in this book. Potential use of ion implantation for the synthesis of Ag nanoparticles in a thin Si layer for the development of thin-film solar cells fabrication technology is discussed. The effect of ion implantation on the physical and mechanical properties of the hard alloy plates based on tungsten carbide and a cobalt binder is described. A study of the effects of ion implantation on the phase composition and the structure of materials is presented. The role of defects in the formation of the phase composition of the ion-implanted materials, structural-phase transformations in metals after ion implantation is investigated. This book will be interesting for professionals in the study of solid state physics, nuclear physics, physics of semi-conductors and nanomaterials. It can also be useful for masters and PhD students, as well as for professionals researching the fabrication and investigation of protective materials with enhanced physical-mechanical and tribological properties, good biocompatibility and resistance to irradiation"--
Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devices together with a brief description of the main trends in the field. The second chapter is devoted to ion im planters, including also high energy apparatus and a description of wafer charging and contaminants. Yield is a quite relevant is sue in the industrial surrounding and must be also discussed in the academic ambient. The slowing down of ions is treated in the third chapter both analytically and by numerical simulation meth ods. Channeling implants are described in some details in view of their relevance at the zero degree implants and of the available industrial parallel beam systems. Damage and its annealing are the key processes in ion implantation. Chapter four and five are dedicated to this extremely important subject.
Carbon has always been a unique and intriguing material from a funda mental standpoint and, at the same time, a material with many technological uses. Carbon-based materials, diamond, graphite and their many deriva tives, have attracted much attention in recent years for many reasons. Ion implantation, which has proven to be most useful in modifying the near surface properties of many kinds of materials, in particular semiconductors, has also been applied to carbon-based materials. This has yielded, mainly in the last decade, many scientifically interesting and technologically impor tant results. Reports on these studies have been published in a wide variety of journals and topical conferences, which often have little disciplinary overlap, and which often address very different audiences. The need for a review to cover in an integrated way the various diverse aspects of the field has become increasingly obvious. Such a review should allow the reader to get an overview of the research that has been done thus far, to gain an ap preciation of the common features in the response of the various carbon to ion impact, and to become aware of current research oppor allotropes tunities and unresolved questions waiting to be addressed. Realizing this, and having ourselves both contributed to the field, we decided to write a review paper summarizing the experimental and theoretical status of ion implantation into diamond, graphite and related materials.
Comprehensive guide to an important materials science technique for students and researchers.
Ion beam of various energies is a standard research tool in many areas of science, from basic physics to diverse areas in space science and technology, device fabrications, materials science, environment science, and medical sciences. It is an advance and versatile tool to frequently discover applications across a broad range of disciplines and fields. Moreover, scientists are continuously improving the ion beam sources and accelerators to explore ion beam at the forefront of scientific endeavours. This book provides a glance view on MeV ion beam applications, focused ion beam generation and its applications as well as practical applications of ion implantation.
A comprehensive review of ion beam application in modern materials research is provided, including the basics of ion beam physics and technology. The physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning is treated in detail. Its applications in materials research, development and analysis, developments of special techniques and interaction mechanisms of ion beams with solid state matter result in the optimization of new material properties, which are discussed thoroughly. Solid-state properties optimization for functional materials such as doped semiconductors and metal layers for nano-electronics, metal alloys, and nano-patterned surfaces is demonstrated. The ion beam is an important tool for both materials processing and analysis. Researchers engaged in solid-state physics and materials research, engineers and technologists in the field of modern functional materials will welcome this text.
This book is the first to give a detailed description of the factors and processes that govern the optical properties of ion implanted materials, as well as an overview of the variety of devices that can be produced in this way. Beginning with an overview of the basic physics and practical methods involved in ion implantation, the topics of optical absorption and luminescence are then discussed. A chapter on waveguide analysis then provides the background for a description of particular optical devices, such as waveguide lasers, mirrors, and novel nonlinear materials. The book concludes with a survey of the exciting range of potential applications.