Download Free Ion Implantation In Semiconductors And Other Materials Book in PDF and EPUB Free Download. You can read online Ion Implantation In Semiconductors And Other Materials and write the review.

During the years since the first conference in this series was held at Thousand Oaks, California, in 1970, ion implantation has been an expanding and exciting research area. The advances in this field were so rapid that a second conference convened at Garmisch Partenkirchen, Germany, in 1971. At the present time, our under standing of the ion implantation process in semiconductors such as Si and Ge has reached a stage of maturity and ion implantation techniques are firmly established in semiconductor device technology. The advances in compound semiconductors have not been as rapid. There has also been a shift in emphasis in ion implanta tion research from semiconductors to other materials such as metals and insulators. It was appropriate to increase the scope of the conference and the IIIrd International Conference on Ion Implanta tion in Semiconductors and Other Materials was held at Yorktown Heights, New York, December 11 to 14, 1972. A significant number of the papers presented at this conference dealt with ion implanta tion in metals, insulators, and compound semiconductors. The International Committee responsible for organizing this conference consisted of B. L. Crowder, J. A. Davies, F. H. Eisen, Ph. Glotin, T. Itoh, A. U. MacRae, J. W. Mayer, G. Dearnaley, and I. Ruge. The Conference attracted 180 participants from twelve countries. The success of the Conference was due in large measure to the financial support of our sponsors, Air Force Cambridge Research Laboratories and the Office of Naval Research.
The technique of ion implantation has become a very useful and stable technique in the field of semiconductor device fabrication. This use of ion implantation is being adopted by industry. Another important application is the fundamental study of the physical properties of materials. The First Conference on Ion Implantation in Semiconductors was held at Thousand Oaks, California in 1970. The second conference in this series was held at Garmish-Partenkirchen, Germany, in 1971. At the third conference, which convened at Yorktown Heights, New York in 1973, the emphasis was broadened to include metals and insulators as well as semiconductors. This scope of the conference was still accepted at the fourth conference which was held at Osaka, Japan, in 1974. A huge number of papers had been submitted to this conference. All papers which were presented at the Fourth International Conference on Ion Implantation in Semiconductors and Other Materials are included in this proceedings. The success of this conference was due to technical presentations and discussions of 224 participants from 14 countries as well as to financial support from many companies in Japan. On behalf of the committee, I wish to thank the authors for their excellent papers and the sponsors for their financial support. The International Committee responsible for advising this conference consisted of B.L. Crowder, J.A. Davies, G. Dearna1ey, F.H. Eisen, Ph. G1otin, T. Itoh, A.U. MacRae, J.W. Mayer, S. Namba, I. Ruge, and F.L. Vook.
This book is the first to give a detailed description of the factors and processes that govern the optical properties of ion implanted materials, as well as an overview of the variety of devices that can be produced in this way. Beginning with an overview of the basic physics and practical methods involved in ion implantation, the topics of optical absorption and luminescence are then discussed. A chapter on waveguide analysis then provides the background for a description of particular optical devices, such as waveguide lasers, mirrors, and novel nonlinear materials. The book concludes with a survey of the exciting range of potential applications.
This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams
Ion Implantation and Beam Processing covers the scientific and technological advances in the fields of ion implantation and beam processing. The book discusses the amorphization and crystallization of semiconductors; the application of the Boltzmann transport equation to ion implantation in semiconductors and multilayer targets; and the high energy density collision cascades and spike effects. The text also describes the implantation of insulators (ices and lithographic materials); the ion-bombardment-induced compositions changes in alloys and compounds; and the fundamentals and applications of ion beam and laser mixing. The high-dose implantation and the trends of ion implantation in silicon technology are also considered. The book further tackles the implantation in gaAs technology and the contacts and interconnections on semiconductors. Engineers and people involved in microelectronics will find the book invaluable.
Ion beam of various energies is a standard research tool in many areas of science, from basic physics to diverse areas in space science and technology, device fabrications, materials science, environment science, and medical sciences. It is an advance and versatile tool to frequently discover applications across a broad range of disciplines and fields. Moreover, scientists are continuously improving the ion beam sources and accelerators to explore ion beam at the forefront of scientific endeavours. This book provides a glance view on MeV ion beam applications, focused ion beam generation and its applications as well as practical applications of ion implantation.
A comprehensive review of ion beam application in modern materials research is provided, including the basics of ion beam physics and technology. The physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning is treated in detail. Its applications in materials research, development and analysis, developments of special techniques and interaction mechanisms of ion beams with solid state matter result in the optimization of new material properties, which are discussed thoroughly. Solid-state properties optimization for functional materials such as doped semiconductors and metal layers for nano-electronics, metal alloys, and nano-patterned surfaces is demonstrated. The ion beam is an important tool for both materials processing and analysis. Researchers engaged in solid-state physics and materials research, engineers and technologists in the field of modern functional materials will welcome this text.
Ion Implantation: Science and Technology serves as both an introduction to and tutorial on the science, techniques, and machines involved in ion implantation. The book is divided into two parts. Part 1 discusses topics such as the history of the ion implantation; the different types and purposes of ion implanters; the penetration of energetic ions into solids; damage annealing in silicon; and ion implantation metallurgy. Part 2 covers areas such as ion implementation system concepts; ion sources; underlying principles related to ion optics; and safety and radiation considerations in ion implantation. The text is recommended for engineers who would like to be acquainted with the principles and processes behind ion implantation or make studies on the field.
In recent years, ion implantation has developed into the major doping technique for integrated circuits. Several series of conferences have dealt with the application of ion implantation to semiconductors and other materials (Thousand Oaks 1970, Garmisch-Partenkirchen 1971, Osaka 1974, Warwick 1975, Boulder 1976, Budapest 1978, and Albany 1980). Another series of conferences was devoted more to implantation equipment and tech niques (Salford 1977, Trento 1978, and Kingston 1980). In connection with the Third International Conference on Ion Implantation: Equipment and Tech niques, held at Queen's University, ' Kingston, Ontario, Canada, July 8-11, 1980, a two-day instructional program was organized parallel to an implan tation conference for the first time. This implantation school concentra ted on aspects of implantation-equipment design. This book contains all lectures presented at the International Ion Implantation School organized in connection with the Fourth International Conference on Ion Implantation: Equipment and Techniques, held at the Convention Center, Berchtesgaden, Germany, September 13-17, 1982. In con trast to the first .school, the main emphasis in thiS school was placed on practical aspects of implanter operation and application. In three chap ters, various machine aspects of ion implantation (general concepts, ion sources, safety, calibration, dOSimetry), range distributions (stopping power, range profiles), and measuring techniques (electrical and nonelec tri ca 1 measu ri ng techni ques, annea 1 i ng) are di scussed. In the appendi x, a review of the state of the art in modern implantation equipment is given.