Download Free Invitation To A Mathematical Festival Book in PDF and EPUB Free Download. You can read online Invitation To A Mathematical Festival and write the review.

Held annually in Moscow since 1990, the Mathematical Festival is a brilliant and fascinating math competition attended by hundreds of middle school students. This contains problems presented at the Festival during the years 1990-2011, along with hints and solutions for many of them. Most of the problems are accessible to students with no additional training in mathematics and may be used as supplementary material at school or at home.
This book is a captivating account of a professional mathematician's experiences conducting a math circle for preschoolers in his apartment in Moscow in the 1980s. As anyone who has taught or raised young children knows, mathematical education for little kids is a real mystery. What are they capable of? What should they learn first? How hard should they work? Should they even "work" at all? Should we push them, or just let them be? There are no correct answers to these questions, and the author deals with them in classic math-circle style: he doesn't ask and then answer a question, but shows us a problem--be it mathematical or pedagogical--and describes to us what happened. His book is a narrative about what he did, what he tried, what worked, what failed, but most important, what the kids experienced. This book does not purport to show you how to create precocious high achievers. It is just one person's story about things he tried with a half-dozen young children. Mathematicians, psychologists, educators, parents, and everybody interested in the intellectual development in young children will find this book to be an invaluable, inspiring resource. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
Early middle school is a great time for children to start their mathematical circle education. This time is a period of curiosity and openness to learning. The thinking habits and study skills acquired by children at this age stay with them for a lifetime. Mathematical circles, with their question-driven approach and emphasis on creative problem-solving, have been rapidly gaining popularity in the United States. The circles expose children to the type of mathematics that stimulates development of logical thinking, creativity, analytical abilities and mathematical reasoning. These skills, while scarcely touched upon at school, are in high demand in the modern world. This book contains everything that is needed to run a successful mathematical circle for a full year. The materials, distributed among 29 weekly lessons, include detailed lectures and discussions, sets of problems with solutions, and contests and games. In addition, the book shares some of the know-how of running a mathematical circle. The curriculum, which is based on the rich and long-standing Russian math circle tradition, has been modified and adapted for teaching in the United States. For the past decade, the author has been actively involved in teaching a number of mathematical circles in the Seattle area. This book is based on her experience and on the compilation of materials from these circles. The material is intended for students in grades 5 to 7. It can be used by teachers and parents with various levels of expertise who are interested in teaching mathematics with the emphasis on critical thinking. Also, this book will be of interest to mathematically motivated children. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
This book is a collection of 34 curiosities, each a quirky and delightful gem of mathematics and each a shining example of the joy and surprise that mathematics can bring. Intended for the general math enthusiast, each essay begins with an intriguing puzzle, which either springboards into or unravels to become a wondrous piece of thinking. The essays are self-contained and rely only on tools from high-school mathematics (with only a few pieces that ever-so-briefly brush up against high-school calculus). The gist of each essay is easy to pick up with a cursory glance—the reader should feel free to simply skim through some essays and dive deep into others. This book is an invitation to play with mathematics and to explore its wonders. Much joy awaits! In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
This book is a translation from Russian of Part I of the book Mathematics Through Problems: From Olympiads and Math Circles to Profession. The other two parts, Geometry and Combinatorics, will be published soon. The main goal of this book is to develop important parts of mathematics through problems. The author tries to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover and recreate much of elementary mathematics and start edging into the sophisticated world of topics such as group theory, Galois theory, and so on, thus building a bridge (by showing that there is no gap) between standard high school exercises and more intricate and abstract concepts in mathematics. Definitions and/or references for material that is not standard in the school curriculum are included. However, many topics in the book are difficult when you start learning them from scratch. To help with this, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions The book is based on classes taught by the author at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Essays collected in this volume deal with various problems from the philosophy of mathematics. What connects them are two questions: how mathematics is created and how it is acquired. In 'Three Worlds of Mathematics' we are familiarized with David Tall's ideas pertaining to the embodied, symbolic and formal worlds of mathematics. In 'Basic Ideas of Intuitionism', we focus on an epistemological approach to mathematics which is distinctive to constructive mathematics. The author focuses on the computational content of intuitionistic logic and shows how it relates to functional programming. 'The Brave Mathematical Ant' carefully selects mathematical puzzles related to teaching experiences in a way that the solution requires creativity and is not obtainable by following an algorithm. Moreover the solution gives us some new insight into the underlying idea. 'Degrees Of Accessibility Of Mathematical Objects' discusses various criteria which can be used to judge accessibility of mathematical objects. We find logical complexity, range of applications, existence of a physical model as well as aesthetic values.
Math Hour Olympiads is a non-standard method of training middle- and high-school students interested in mathematics where students spend several hours thinking about a few difficult and unusual problems. When a student solves a problem, the solution is presented orally to a pair of friendly judges. Discussing the solutions with the judges creates a personal and engaging mathematical experience for the students and introduces them to the true nature of mathematical proof and problem solving. This book recounts the authors' experiences from the first ten years of running a Math Hour Olympiad at the University of Washington in Seattle. The major part of the book is devoted to problem sets and detailed solutions, complemented by a practical guide for anyone who would like to organize an oral olympiad for students in their community. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material that is not standard in the school curriculum are included. To help students that might be unfamiliar with new material, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions. The book is based on classes taught by the authors at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, SLMath (formerly MSRI) and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
The people of the Navajo Nation know mathematics education for their children is essential. They were joined by mathematicians familiar with ways to deliver problems and a pedagogy that, through exploration, shows the art, joy and beauty in mathematics. This combined effort produced a series of Navajo Math Circles—interactive mathematical explorations—across the Navajo Reservation. This book contains the mathematical details of that effort. Between its covers is a thematic rainbow of problem sets that were used in Math Circle sessions on the Reservation. The problem sets are good for puzzling over and exploring the mathematical ideas within. They will help nurture curiosity and confidence in students. The problems come with suggestions for pacing, for adjusting the problems to be more or less challenging, and for different approaches to solving them. This book is a wonderful resource for any teacher wanting to enrich the mathematical lives of students and for anyone curious about mathematical thinking outside the box. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
This book is based on selected topics that the authors taught in math circles for elementary school students at the University of California, Berkeley; Stanford University; Dominican University (Marin County, CA); and the University of Oregon (Eugene). It is intended for people who are already running a math circle or who are thinking about organizing one. It can be used by parents to help their motivated, math-loving kids or by elementary school teachers. We also hope that bright fourth or fifth graders will be able to read this book on their own. The main features of this book are the logical sequence of the problems, the description of class reactions, and the hints given to kids when they get stuck. This book tries to keep the balance between two goals: inspire readers to invent their own original approaches while being detailed enough to work as a fallback in case the teacher needs to prepare a lesson on short notice. It introduces kids to combinatorics, Fibonacci numbers, Pascal's triangle, and the notion of area, among other things. The authors chose topics with deep mathematical context. These topics are just as engaging and entertaining to children as typical “recreational math” problems, but they can be developed deeper and to more advanced levels. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.