Download Free Investment Planning For Electric Power Systems To Mitigate Extreme Events Book in PDF and EPUB Free Download. You can read online Investment Planning For Electric Power Systems To Mitigate Extreme Events and write the review.

My research has focused on two inter-related questions. First, how do we model the impacts of terrorism and earthquake events on electric power systems? Second, how might we optimize investments in these systems when there are limited resources? For intentional attack we model the interaction between the offender and the operator of the network where both parties have limited budgets and behave in their own selfinterest. The problem was formulated as a multi-level mixed-integer programming problem and we implemented a Tabu search with an embedded greedy algorithm to find the optimum defense strategy. We model the regional earthquake hazard using a four step process that included an optimization problem to select a small collection of events from a candidate set, including a probability of occurrence for each event that matches the hazard. Since electric power systems are spatially distributed, their performance is driven by the joint distribution for damage of the components. Hence we estimated this distribution by constructing a collection of consequence scenarios for each earthquake scenario, where each consequence scenario identifies the level of damage to each component. For each consequence scenario, we used an economic dispatch model to predict the load shed and repair costs throughout the repair process. We expanded the analysis of the power network under the seismic risk by modeling the additional impact of cascading outages and the consequences on the air passenger transportation system due to the interdependency of both networks. We formulated the problem of selecting seismic mitigation strategies to increase resilience of electric power system to earthquake hazards as a two-stage stochastic program. We develop a custom solution procedure which we show to be computationally effective for extremely large problem instances.
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
RESILIENCY OF POWER DISTRIBUTION SYSTEMS A revolutionary book covering the relevant concepts for resiliency-focused advancements of the distribution power grid Most resiliency and security guidelines for the power industry are focused on power transmission systems. As renewable energy and energy storage increasingly replace fossil-fuel-based power generation over the coming years, geospatially neighboring distributed energy resources will supply a majority of consumers and provide clean power through long transmission lines. These electric power distribution systems—the final stage in the delivery of electric power—carry electricity from the transmission system to individual consumers. New distributed devices will be essential to the grid to manage this variable power generation and enhance reliability and resilience while keeping electricity affordable as the world seeks solutions to climate change and threats from extreme events. In Resiliency of Power Distribution Systems, readers are provided with the tools to understand and enhance resiliency of distribution systems—and thereby, the entire power grid. In a shift from the present design and operation of the power system, the book is focused on improving the grid’s ability to predict, adapt, and respond to all hazards and threats. This, then, acts as a guide to ensure that any incident can be mitigated and responded to promptly and adequately. It also highlights the most advanced and applicable methodologies and architecture frameworks that evaluate degradation, advance proactive action, and transform system behavior to maintain normal operation, under extreme operating conditions. Resiliency of Power Distribution Systems readers will also find: Chapter organization that facilitates quick review of distribution fundamental and easy-but-thorough understanding of the importance of resiliency Real-world case studies where resilient power systems could have prevented massive financial and energy losses Frameworks to help mitigate cyber-physical attacks, strategize response on multiple timescales, and optimize operational efficiencies and priorities for the power grid Resiliency of Power Distribution Systems is a valuable reference for power system professionals including electrical engineers, utility operators, distribution system planners and engineers, and manufacturers, as well as members of the research community, energy market experts and policy makers, and graduate students on electrical engineering courses.
Discover cutting-edge developments in electric power systems Stemming from cutting-edge research and education activities in the field of electric power systems, this book brings together the knowledge of a panel of experts in economics, the social sciences, and electric power systems. In ten concise and comprehensible chapters, the book provides unprecedented coverage of the operation, control, planning, and design of electric power systems. It also discusses: A framework for interdisciplinary research and education Modeling electricity markets Alternative economic criteria and proactive planning for transmission investment in deregulated power systems Payment cost minimization with demand bids and partial capacity cost compensations for day-ahead electricity auctions Dynamic oligopolistic competition in an electric power network and impacts of infrastructure disruptions Reliability in monopolies and duopolies Building an efficient, reliable, and sustainable power system Risk-based power system planning integrating social and economic direct and indirect costs Models for transmission expansion planning based on reconfiguration capacitor switching Next-generation optimization for electric power systems Most chapters end with a bibliography, closing remarks, conclusions, or future work. Economic Market Design and Planning for Electric Power Systems is an indispensable reference for policy-makers, executives and engineers of electric utilities, university faculty members, and graduate students and researchers in control theory, electric power systems, economics, and the social sciences.
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
The resiliency of the electric power grid to extreme events is a fundamental motivation for modernizing the aging and vulnerable critical infrastructure. The alarming rise in the number of incidences of cyber-attacks and severe storms over the last few years have caused prolonged power outages for millions of customers. The financial impact of these events upon the utilities has been several hundred billions of dollars.The objective of this dissertation is to develop a comprehensive framework and algorithms for enabling resiliency of power distribution systems - encompassing time-span from planning to post-event restoration and recovery that would minimize the power outages resulting in less economic losses and public inconveniences.Some of the main challenges of the industry in planning - are the broad range of interpretations of power distribution system resiliency, based on the time available for preparing before an event happens and recovering afterward, and lack of detailed, region-specific distribution models. This dissertation addresses these problems extensively. A mathematical model for studying the propagation of extreme events in the cyber-physical power grid has also been discussed.Enabling resiliency in near-term or during the contingency requires the ability to perform power flow and restoration calculations for the impending or ongoing threat. Thus, an event-driven proactive network reconfiguration strategy has been proposed, to study how the path of propagation can impact the operation and restoration of the power distribution system.In the aftermath of an event, the distribution system infrastructure is characterized by uncertain topology, load demand, power resources, and time until power can be completely restored to all customers. In this work, the resiliency of the electric grid has been studied as a robust optimization problem for the effective allocation of scant resources to meet the demands of critical customers during prolonged periods of power outage.The proposed theory and algorithms in this dissertation have been tested on IEEE test systems as well as validated against actual data available from industry partners.
"While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and future planning need to consider emerging climate conditions and impacts on design, construction, operation, and maintenance. Integrated risk-based planning processes will be critical to address the climate change impacts and harmonize actions within and across sectors. Also, awareness, knowledge, and capacity impede mainstreaming of climate adaptation into the energy sector. However, the formal knowledge base is still nascent?information needs are complex and to a certain extent regionally and sector specific. This report provides an up-to-date compendium of what is known about weather variability and projected climate trends and their impacts on energy service provision and demand. It discusses emerging practices and tools for managing these impacts and integrating climate considerations into planning processes and operational practices in an environment of uncertainty. It focuses on energy sector adaptation, rather than mitigation which is not discussed in this report. This report draws largely on available scientific and peer-reviewed literature in the public domain and takes the perspective of the developing world to the extent possible."
The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters is the summary of a workshop convened in February 2013 as a follow-up to the release of the National Research Council report Terrorism and the Electric Power Delivery System. That report had been written in 2007 for the Department of Homeland Security, but publication was delayed because of security concerns. While most of the committee's findings were still relevant, many developments affecting vulnerability had occurred in the interval. The 2013 workshop was a discussion of the committee\'s results, what had changed in recent years, and how lessons learned about the grid's resilience to terrorism could be applied to other threats to the grid resulting from natural disasters. The purpose was not to translate the entire report into the present, but to focus on key issues relevant to making the grid sufficiently robust that it could handle inevitable failures without disastrous impact. The workshop focused on five key areas: physical vulnerabilities of the grid; cybersecurity; mitigation and response to outages; community resilience and the provision of critical services; and future technologies and policies that could enhance the resilience of the electric power delivery system. The electric power transmission and distribution system (the grid) is an extraordinarily complex network of wires, transformers, and associated equipment and control software designed to transmit electricity from where it is generated, usually in centralized power plants, to commercial, residential, and industrial users. Because the U.S. infrastructure has become increasingly dependent on electricity, vulnerabilities in the grid have the potential to cascade well beyond whether the lights turn on, impacting among other basic services such as the fueling infrastructure, the economic system, and emergency services. The Resilience of the Electric Power Delivery System in Response to Terrorism and Natural Disasters discusses physical vulnerabilities and the cybersecurity of the grid, ways in which communities respond to widespread outages and how to minimize these impacts, the grid of tomorrow, and how resilience can be encouraged and built into the grid in the future.
Providing a reliable and resilient supply of electric power to communities across the United States has always posed a complex challenge. Utilities must support daily operations to serve a diverse array of customers across a heterogeneous landscape while simultaneously investing in infrastructure to meet future needs, all while juggling an enormous array of competing priorities influenced by costs, capabilities, environmental and social impacts, regulatory requirements, and consumer preferences. A rapid pace of change in technologies, policies and priorities, and consumer needs and behaviors has further compounded this challenge in recent years. The National Academies of Sciences, Engineering, and Medicine convened a workshop on February 3, 2020 to explore strategies for incorporating new technologies, planning and operating strategies, business models, and architectures in the U.S. electric power system. Speakers and participants from industry, government, and academia discussed available models for long-term transmission and distribution planning, as well as the broader context of how these models are used and future opportunities and needs. This publication summarizes the presentations and discussions from the workshop.
This book analyses the technical and social systems that satisfy these needs and asks how methods can be put into practice to achieve this.