Download Free Investigation On The Mobile Robot Navigation In An Unknown Environment Book in PDF and EPUB Free Download. You can read online Investigation On The Mobile Robot Navigation In An Unknown Environment and write the review.

A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.
This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.
In recent years, autonomous robots, including Xavier, Martha [1], Rhino [2,3], Minerva,and Remote Agent, have shown impressive performance in long-term demonstrations. In NASA’s Deep Space program, for example, an - tonomous spacecraft controller, called the Remote Agent [5], has autonomously performed a scienti?c experiment in space. At Carnegie Mellon University, Xavier [6], another autonomous mobile robot, navigated through an o?ce - vironment for more than a year, allowing people to issue navigation commands and monitor their execution via the Internet. In 1998, Minerva [7] acted for 13 days as a museum tourguide in the Smithsonian Museum, and led several thousand people through an exhibition. These autonomous robots have in common that they rely on plan-based c- trol in order to achieve better problem-solving competence. In the plan-based approach, robots generate control actions by maintaining and executing a plan that is e?ective and has a high expected utility with respect to the robots’ c- rent goals and beliefs. Plans are robot control programs that a robot can not only execute but also reason about and manipulate [4]. Thus, a plan-based c- troller is able to manage and adapt the robot’s intended course of action — the plan — while executing it and can thereby better achieve complex and changing tasks.
This book constitutes the proceedings of the First International Conference on Intelligent Robotics and Manufacturing, IRAM 2012, held in Kuala Lumpur, Malaysia, in November 2012. The 64 revised full papers included in this volume were carefully reviewed and selected from 102 initial submissions. The papers are organized in topical sections named: mobile robots, intelligent autonomous systems, robot vision and robust, autonomous agents, micro, meso and nano-scale automation and assembly, flexible manufacturing systems, CIM and micro-machining, and fabrication techniques.
This monograph is a revised version of the D.Phil. thesis of the first author, submitted in October 1990 to the University of Oxford. This work investigates the problem of mobile robot navigation using sonar. We view model-based navigation as a process of tracking naturally occurring environment features, which we refer to as "targets". Targets that have been predicted from the environment map are tracked to provide that are observed, but not predicted, vehicle position estimates. Targets represent unknown environment features or obstacles, and cause new tracks to be initiated, classified, and ultimately integrated into the map. Chapter 1 presents a brief definition of the problem and a discussion of the basic research issues involved. No attempt is made to survey ex haustively the mobile robot navigation literature-the reader is strongly encouraged to consult other sources. The recent collection edited by Cox and Wilfong [34] is an excellent starting point, as it contains many of the standard works of the field. Also, we assume familiarity with the Kalman filter. There are many well-known texts on the subject; our notation derives from Bar-Shalom and Fortmann [7]. Chapter 2 provides a detailed sonar sensor model. A good sensor model of our approach to navigation, and is used both for is a crucial component predicting expected observations and classifying unexpected observations.
Safe Robot Navigation Among Moving and Steady Obstacles is the first book to focus on reactive navigation algorithms in unknown dynamic environments with moving and steady obstacles. The first three chapters provide introduction and background on sliding mode control theory, sensor models, and vehicle kinematics. Chapter 4 deals with the problem of optimal navigation in the presence of obstacles. Chapter 5 discusses the problem of reactively navigating. In Chapter 6, border patrolling algorithms are applied to a more general problem of reactively navigating. A method for guidance of a Dubins-like mobile robot is presented in Chapter 7. Chapter 8 introduces and studies a simple biologically-inspired strategy for navigation a Dubins-car. Chapter 9 deals with a hard scenario where the environment of operation is cluttered with obstacles that may undergo arbitrary motions, including rotations and deformations. Chapter 10 presents a novel reactive algorithm for collision free navigation of a nonholonomic robot in unknown complex dynamic environments with moving obstacles. Chapter 11 introduces and examines a novel purely reactive algorithm to navigate a planar mobile robot in densely cluttered environments with unpredictably moving and deforming obstacles. Chapter 12 considers a multiple robot scenario. For the Control and Automation Engineer, this book offers accessible and precise development of important mathematical models and results. All the presented results have mathematically rigorous proofs. On the other hand, the Engineer in Industry can benefit by the experiments with real robots such as Pioneer robots, autonomous wheelchairs and autonomous mobile hospital. - First book on collision free reactive robot navigation in unknown dynamic environments - Bridges the gap between mathematical model and practical algorithms - Presents implementable and computationally efficient algorithms of robot navigation - Includes mathematically rigorous proofs of their convergence - A detailed review of existing reactive navigation algorithm for obstacle avoidance - Describes fundamentals of sliding mode control
The ICANNGA series of Conferences has been organised since 1993 and has a long history of promoting the principles and understanding of computational intelligence paradigms within the scientific community and is a reference for established workers in this area. Starting in Innsbruck, in Austria (1993), then to Ales in Prance (1995), Norwich in England (1997), Portoroz in Slovenia (1999), Prague in the Czech Republic (2001) and finally Roanne, in France (2003), the ICANNGA series has established itself for experienced workers in the field. The series has also been of value to young researchers wishing both to extend their knowledge and experience and also to meet internationally renowned experts. The 2005 Conference, the seventh in the ICANNGA series, will take place at the University of Coimbra in Portugal, drawing on the experience of previous events, and following the same general model, combining technical sessions, including plenary lectures by renowned scientists, with tutorials.
Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. - Clearly and authoritatively presents mobile robot concepts - Richly illustrated throughout with figures and examples - Key concepts demonstrated with a host of experimental and simulation examples - No prior knowledge of the subject is required; each chapter commences with an introduction and background
This book features high-quality research papers presented at the International Conference on Advanced Computing and Intelligent Engineering (ICACIE 2017). It includes sections describing technical advances in the fields of advanced computing and intelligent engineering, which are based on the presented articles. Intended for postgraduate students and researchers working in the discipline of computer science and engineering, the proceedings also appeal to researchers in the domain of electronics as it covers hardware technologies and future communication technologies.
This book presents recent trends in the field as perceived by a global selection of researchers and experts. Subjects covered include motion planning of mobile robots in unknown environments, coordination between mobility and manipulability, computation environments for mobile robots, nonlinear control of mobile robots and environmental modeling using advanced sensing technologies. Issues ranging from progress in applications to fundamental problems are discussed.