Download Free Investigation On Performance Advantage Of Functionally Integrated Magnetic Components In Decentralised Power Electronic Applications Book in PDF and EPUB Free Download. You can read online Investigation On Performance Advantage Of Functionally Integrated Magnetic Components In Decentralised Power Electronic Applications and write the review.

The functional integration of magnetic components is a known technique in order to enable high power densities for power electronic converters. Magnetic components are mandatory in many power electronic converters and many topologies demand more than one magnetic component. Therefore, the functional integration of magnetic components allows realising several magnetic functions within one component. This technique promises lower total size, losses and costs without switching frequency increase. There are several examples in the literature for coupled inductors, common-differential-mode chokes or transformer-inductor components. One centralised question of this work is to explore the performance advantage of functionally integrated magnetic components in comparison to discrete components. Many applications allow the introduction of simple magnetic structures and standard cores or simple modifications of these (flux bypasses) in order to enable the required component behaviour. The design guidelines introduced in this work enable the design of functional integrated magnetic components with limited effort and, therefore, the application of components which enable superior performance regarding size and power loss for the applications.
High reliability and system lifetimes in the range of 30 years are essential for renewable energy systems such as photovoltaic power plants to minimise costs for the generated electric energy. At the same time such systems are used in regions with high solar irradiance and also harsh environmental conditions. Therefore, designs for photovoltaic inverters need to meet not only the key design criteria of high conversion efficiency but also need to be very robust and at the same time meet challenging cost targets. In this dissertation aspects concerning the lifetime and reliability of power semiconductors in photovoltaic central inverters are investigated. On key topic of the dissertation is the measurement of the voltage dependent failure rate due to cosmic radiation induced single-event-burnout of SiC and Si power semiconductors. The second topic is the development of a system level simulation to quantify the stress on the power semiconductors in a PV central inverters in various regions of the world. Further topics are the investigation of improved control concepts for the cooling system of PV central inverters and the monitoring of IGBT temperatures during converter operation.
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Popular Science gives our readers the information and tools to improve their technology and their world. The core belief that Popular Science and our readers share: The future is going to be better, and science and technology are the driving forces that will help make it better.
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids